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The 3-body problem

A great survey is our main reference [HS17] by Hryniewicz and
Salomão.

Interested in studying the motion of 3 objects (Sun, Earth, Moon)
under gravity.

The equations (written in [Sun13]) that govern the 3 Body problem are
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The 3-Body problem

This is a system of 18 ODEs which is difficult to solve.

No general analytical solution to the three-body problem by
simple algebraic expressions and integrals.

Sundman in 1912: Given initial conditions

xi(0), yi(0), zi(0), x′i(0), y′i(0), z′i(0), i ∈ {1, 2, 3}

corresponding to zero angular momentum, a solution can locally
be written in terms of a power series in a new time coordinate τ .

The new time coordinate and radius of convergence can be
explicitly given in terms of

mi, xi(0), yi(0), zi(0), x′i(0), y′i(0), z′i(0), i ∈ {1, 2, 3}

The convergence is slow beyond practical.
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RPCR3BP and Poincaré’s idea

It is clear that the 3BP is extremely hard in its full generality.

The way to simplify the problem is to add adjectives: Restricted,
Planar, Circular, Regularized.

Poincaré was on a quest of periodic orbits for the RP3BP and had
a genius idea. Transfer 3D to 2D!

Figure: RP3BP.

Figure: The purple surface
turns out to be an annulus.
Found in [Moe17]
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Poincaré’s work

This idea was formalized in 1912, in the work “Sur un
Théorème de Géométrie” [Poi12] providing the notion of an
annulus-like global surface of section for the Hamiltonian flow of
RP3BP.

If someone needs to find periodic orbits, they need to search for
sections Σ, i.e. surfaces with boundary. The flow has to be
transverse to their interior and their boundary should consist of
periodic orbits.

Global sections Σ, i.e. for all points on the manifold, either their
trajectory following the flow intersects the interior transversely
both in the future and the past or the trajectory of the point is on
the boundary of the surface. (Section has enough info.)

Poincaré then explained that a proof to the following theorem
would provide periodic orbit, i.e. solutions to the RP3BP.
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Poincaré’s/Birkhoff’s work.

Theorem (Poincaré-Birkhoff)

A homeomorphism of the closed annulus
Area-preserving
Orientation-preserving
Twisting its boundary components in opposite directions

has at least two fixed points.

A fixed point of this map corresponds to a periodic orbit of the
system.

k-periodic points of this map correspond to periodic orbits closing
up after k iterations of the homeomorphism.

Poincaré published the proof in special cases for consideration by
other mathematicians.

A year later, Birkhoff in [Bir13] provided a full proof.
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A homeomorphism of the closed annulus
Area-preserving
Orientation-preserving
Twisting its boundary components in opposite directions

has at least two fixed points.

A fixed point of this map corresponds to a periodic orbit of the
system.

k-periodic points of this map correspond to periodic orbits closing
up after k iterations of the homeomorphism.
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Definitions

Definition

Let φt be a smooth flow on a smooth closed 3-dimensional manifold M .
An embedded surface Σ ↪→M is a global surface of section for the flow
φt if:

Each component of ∂Σ is a periodic orbit of φt.
φt is transverse to Σ\∂Σ
Globality: For every p ∈M\∂Σ there exist times t+ > 0 and
t− < 0 such that φt+(p), φt−(p) ∈ Σ\∂Σ
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Definitions

Definition

For every p ∈ Σ\∂Σ, we call τ(p) := inf{t > 0 | φt(p) ∈ Σ} the first
return time.

Definition

The map ψ : Σ\∂Σ→ Σ\∂Σ given by ψ(p) := φτ(p)(p) is called the first
return map.

We can think of M as a regular energy level of the Hamiltonian
system.

Later we will focus on a special case of 3-dimensional flows,
namely Reeb flows in 3-dimensional contact manifolds.

Upshot: Dynamics are encoded in the first return map. Thus, GSS
discretize the flow and reduce dimensions.
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Example 0: Geodesic flow on S2

Consider the equator on the standard S2.

Also, consider the annulus [0, π]× [0, π]. The first angle refers to a
specific point on the equator and the second to a vector at the
point of the equator pointing towards the upper hemisphere or the
equator in either direction.

This Annulus, called the Birkhoff Annulus records the initial
conditions of a geodesic starting at a point on the equator. The
following figure is from [Cip93].

Figure: Return information is contained in the Birkhoff annulus.

The geodesic is closed precisely when the departing info matches
the return info.
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Example 0: Geodesic flow on S2

Every time a geodesic returns to the annulus from the lower
hemisphere, it determines a point on the Birkhoff Annulus.

The geodesic is closed precisely when the departing info matches
the return info.

This corresponds to a fixed or periodic point of the return map to
the annulus.

Birkhoff: Curvature K > 0⇒ the return map is well defined.

This can fail in other cases as the following pictures illustrate. The
first is from [Cip93] and the second from [Oan14].
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Application: ∞-many closed geodesics on S2

Birkhoff 1917: Any S2 has at least one closed geodesic (“equator”).

Lyusternik-Schnirelmann 1929: At least 3.

Bangert-Franks 1991: There are ∞-many closed geodesics on any
S2.

Case 1:

Birkhoff’s map is area preserving.

Franks: For any area preserving homeomorphism of the annulus
there are either 0 or ∞-many periodic points.

0 periodic points can be ruled out as this is an older theorem of
Birkhoff, so we get that there are ∞-many closed geodesics on S2.

Case 2:

Bangert handled the case when the return map to the Birkhoff
annulus fails to exist with differential geometry.
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Contact Geometry

Definition

Let M3 be a closed manifold.
(M3, ξ = kerα) where α ∧ dα is a volume form is called a contact
manifold.
The 1-form α is called a contact form.

α ∧ dα being a volume form translates into ξ being a maximal
non-integrable distribution.

Definition

The Reeb vector field associated to the contact 1-form α is the vector
field Rα determined by

ιRαdα = 0
α(Rα) = 1

Its flow is called the Reeb flow on M .
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Example 1: Standard S3

Consider S3 := {(z1, z2) ∈ C2||z1|2 + |z2|2 = 1} inside C2 with its
standard primitive for the symplectic form

λ0 =
i

2
(z1dz1 − z1dz1 + z2dz2 − z2dz2)

=
1

2

2∑
j=1

xjdyj − yjdxj

where we set z1 = x1 + iy1 and z2 = x2 + iy2.

Set α0 := λ0|S3

It is easy to check that α0 ∧ dα0 is a volume form on S3.

This makes (S3, α0) a contact manifold.
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Example 1: Standard S3

Rα0 = 2
2∑
j=1

xj∂yj − yj∂xj and its flow is found by the ODE system

ẋj = −2yj

ẏj = 2xj

It will be useful for later to express it in polar coordinates.

Setting

{
xj = rj cos(θj)

yj = rj sin(θj)
for j ∈ {1, 2}, we get α0 = 1

2

2∑
j=1

r2jdθj

We get Rα0 = 2(∂θ1 + ∂θ2) and the system becomes

θ̇1 = 2

θ̇2 = 2
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ẋj = −2yj
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Example 1: Standard S3

Thus, φt(z1, z2) = (e2itz1, e
2itz2), i.e the flow rotates each factor of

C2 separately with the same angular speed for each factor.

We will think of S3 as the union of an open solid tube and a copy
of S1 as follows.

Exercise: The complement of S1 in S3 deformation retracts to an
open solid torus.
(Hint: S3 is the union of two solid tori glued along their
boundaries meridian to longitude.)

The copy of S1 is C := {(z1, z2) ∈ S3||z1| = 1} and is a periodic
orbit of the flow.

For its complement, we have the diffeomorphism
g : Int(D)× R/πZ→ S3, with g(r, θ, s) = (rei(θ+2s),

√
1− r2e2is)
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Example 1: Standard S3

If we extend g to ∂D× R/πZ, we get g(∂D× R/πZ) = C.

For fixed s ∈ R/πZ, g|Int(D)×{s} is an open meridian disk in the
solid torus.

For all s ∈ R/πZ, all of the chosen disks have boundary C and
form a foliation of its complement.

g∗α0 = g∗
(1

2
(r21dθ1 + r22dθ2)

)
=

1

2
r2d(θ + 2s) +

1

2
2(1− r2)ds

=
1

2
r2dθ + ds = λ+ ds

where λ the standard primitive on D.

We see Rα0 = ∂s, so the flow is everywhere transverse to the
meridian disks.
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Example 1: Standard S3

The next two points are particularly useful for Jun’s talk.

Any disk bounded by C in this foliation is a global surface of
section.

The return map of such disk is the identity which is obviously
symplectic and the return time is π.

Thus, there are plenty of global surfaces of sections in S3.

Figure: GSS in S3
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Example 1: Standard S3

Conclusion: Naturally one expects a general theorem for such
space.

This is the main theorem from [HWZ98] for global surface of
sections on convex hypersurfaces in R4 containing the origin. It is
discussed in a few slides.

Before this though, we present an example which demonstrates
that even in simple examples, where the flow is completely
understood explicitly, it is not easy to decide whether a global
surface of section exists.
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Example 2: Standard torus

Consider T 3 := (R/2πZ)θ × (R2/Z2)x,y

Equip it with λ = cos(θ)dx− sin(θ)dy

λ ∧ dλ = dθ ∧ dx ∧ dy 6= 0.

Rλ = cos(θ)∂x − sin(θ)∂y

Figure: Contact structure on T 3. Found in Patrick Massot’s website.
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Example 2: Standard torus

All orbits are horizontal so a global surface of sections should not
be horizontal.

Figure: View from top

A good candidate for a global surface of section would be some
2-dimensional torus corresponding to fixed y0, T

2 = {(θ, x, y0)}.

There is a (0, 1)-worth of Reeb orbits missing it, precisely when
θ = 0 and 1 orbit which is not transverse.
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Example 2: Standard torus

Maybe if we “rotate”, “bend” or “add genus” to this vertical plane
we get a corresponding closed surface and a global surface of
section exists.

It seems hard to find a global surface of section even in this simple
explicit example.

Yet topological considerations in this case do not seem to provide
an obstruction. (e.g. T 3 fibers over S1).

Hence, finding a global surface of section is generally a hard
problem.
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Main Existence Theorem

The following is a special case of theorem 1.3 in [HWZ98].

Theorem (Hofer-Wysocki-Zehnder)

Let M be a convex hypersurface in R4 enclosing the origin, equipped
with α = λ0|M . Let Rα be the associated Reeb vector field. Then ∃
periodic orbit P0 of Rα s.t.

P0 is the boundary of a disk-like global surface of section D.
The Poincaré return map is symplectic.

Using this we can already see that the standard contact S3

possesses a global surface of section.

This was expected due to our preliminary calculations which gave
us explicit global surface of sections on S3.

This theorem, as well as the next one, holds in the more general
case of dynamically convex contact forms. (See Jean’s talk.)
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Existence Theorems

The following theorem is again a special case of a theorem found in
[Hry14].

Theorem (Hryniewicz)

Consider a convex hypersurface M in R4 enclosing the origin, equipped
with the contact form α = λ0|M .

A periodic orbit γ bounds a disk-like global surface of section ⇔ It
is unknotted and has self-linking number −1.
Such an orbit binds an open book decomposition whose pages are
disk-like global surfaces of section.

This theorem verifies the intuition we built so far.

This unknotted orbit in our main example is C.

The equivalence in the theorem yields room for obstructions.
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Some Obstructions

Frauenfelder and Van Koert discuss the following obstructions in their
book [FvK18]:

Obstruction 1: If a periodic orbit is a binding orbit of a disk-like
global surface of section, then it is unknotted.

Obstruction 2: If a periodic orbit is the binding orbit of a global
surface of section, it is linked to every other periodic orbit.

Obstruction 3: If a periodic Reeb orbit γ is the binding orbit of
a disk-like global surface of section, then its self-linking number
satisfies sl(γ) = −1.
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Non-Existence theorem of disk-like Surface of Section

The question of existence of a Reeb flow on the tight S3 without
any global surface of sections is still open.

In [vK20], Van Koert using a certain Murasugi sum construction
(connected sum of abstract open books), shows that obstruction 2
holds providing the following partial result.

Theorem (Van Koert)

There is a Reeb flow on (S3, ξ0) that does not admit a global
surface of section with only one boundary component.
In particular, this Reeb flow does not admit a disk-like global
surface of section.
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Non-Existence theorem of disk-like Surface of Section

Figure: Murasugi Sum. Found in [vK20]

.

Van Koert chooses 3 Open Book Decompositions for the standard
tight S3 and performs the Murasugi sum of them.

He equips the sum with a specific Reeb flow such that the colored
regions below are invariant sets.
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Non-Existence theorem of disk-like Surface of Section

The specific sum is described in the following picture.

Figure: The Murasugi Sum in the proof.

The invariant regions contain Reeb orbits which do not link to the
orbits of any other region.

By obstruction 2, we need more boundary components in order to
be linked with the Reeb orbits of all invariant regions.
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Thank you!
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