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Motivation

• The main objects that will be discussed in this talks are

K0 group of a category K0(·)

and
Hochschild homology of a category HH∗(·)

• The motivation of this talk is to understand the map f2 in the
following picture,

from Page 2695 in Biran-Cornea’s Cone-decompositions of
Lagrangian cobordisms in Lefschetz fibrations (Selecta 2017).
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K0 group of an abelian category
• Algebraic K-theory has a complicated history. Giants were
involved: A. Grothendieck, H. Bass, J. Milnor, D. Quillen, · · · .

• Let A be an abelian category, so one can discuss isomorphism
classes and short exact sequences.

Definition
K0(A ) is the abelian group freely generated by the isomorphism
classes of objects of A , denoted by [A] for A ∈ Obj(A ), modulo
the relation that [B] = [A] + [C ] if and only if there exists the
following short exact sequence in A

0→ A→ B→ C → 0.

Example
Let A = Mod(k), the category of k-modules. Then K0(A )' Z. Indeed,
for any x = m1[A1] + ... +mn[An] = [V ]− [W ] in K0(A ), consider the
isomorphism dimk : K0(A )→ Z defined by

dimk(x) = dimk(V )− dimk(W ).
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Triangulated category
An abelian category C is called triangulated if there exists an
automorphism T :C →C and triangles as follows,

∆ : A→ B→ C → T (A);
where there is a set of distinguished triangles dist∆(C ) satisfying

(TR0) If ∆′ '∆ for ∆ ∈ dist∆(C ), then ∆′ ∈ dist∆(C ). For any
A ∈ Obj(C ), A

eA−→ A→ 0→ A[1] ∈ dist∆(C ).
(TR1) Any morphism f : A→ B can embed into a ∆ ∈ dist∆(C ).
(TR2) If ∆ ∈ dist∆(C ), then T (∆),T−1(∆) ∈ dist∆(C ).
(TR4) The octahedral axiom.

E //

��

0 //

��

T (E )

��

F g◦f
//

f
��

A //

��

C

��

X g
// A // B
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Example I

Example
Let A = Mod(k). Denote by Hotb(A ) the homotopy category of
bounded complexes of k-modules.

Obj(Hotb(A )) = {A• |A• is a bounded chain complex}

and HomHotb(A ) = {chain maps}/∼, where f ∼ g means f and g are
homotopic.

Then Hotb(A ) is a triangulated category. In particular
T (A•) = A•[1] = A•−1.

Usually there are two variants based on the example above.

Example (Variant I)
Let D(Mod(k)) be a derived category of Mod(k). By definition,

Db(Mod(k)) = Hotb(A )[{quasimorphisms}−1]

i.e., quasi-isomorphisms are invertible. A famous example is Db(CohX ),
derived category of coherent sheaves on a smooth projective variety X.
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Example II

Example (Variant II)
A differential graded category (for brevity, called dg-category) C is a
category consisting of a set of objects Obj(C ) and for any A,B ∈ Obj(C ),

HomC (A,B) is a chain complex of k-modules

such that composition ◦ is a chain map (Leibniz rule).

The degree-0 closed element in HomC (A,B) is a chain map. The
image of ∂1 are null homotopy elements.

Replace HomC (A,B) by its homology group, we obtain the
homology category of C denoted by Ho•(C ). In particular,

HomHo0(C )(A,B) ∈ Hotb(Mod(k)),

where Ho0(C ) is called the homotopy category of C .

Remark
A dg-category is a special case of an A∞-category (with operators
{µi}i≥1) where µ1 = differential, µ2 = composition, and µ≥3 = 0.
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About (TR1)
In Hotb(A ) above, to complete f• : A•→ B• into a distinguished
triangle, we use mapping cone Cone•(f ) defined as B• ⊕A•[1]
with its k-th differential defined by

dco
k :=

�

dB
k −fk−1
0 dA

k−1

�

: Bk ⊕Ak [1]→ Bk−1 ⊕Ak−1[1].

Therefore, we get a distinguished triangle,

A•
f
−→ B•

iB−→ Cone•(f )
πA−→ A•[1].

Remark
The requirement of (TR0) implies the necessity to work over
homotopy category (instead of the category of chain complexes).

Exercise
The morphism f• : A•→ B• is an isomorphism in Hotb(A ), then
Cone•(f )' 0 in Hotb(A ).
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K0 group of a triangulated category

Definition
Let C be a triangulated category. K0(C ) is an abelian group freely
generated by the isomorphism classes of objects of C , denotes by
[A] for A ∈ Obj(C ), modulo the relation [B] = [A] + [C ] if and only
if A→ B→ C → T (A) ∈ dist∆(C ).

Remark
The first conclusion of (TR0) implies the definition is well-defined.

Example
For any A ∈ Obj(C ), the second conclusion of (TR0) and (TR2) implies
that A→ 0→ T (A)→ T (A) ∈ dist∆(C ). Therefore,

0 := [0] = [A] + [T (A)] in K0(C ),

which says [T (A)] = −[A]. This is how “inverse” appears in K0(C ).

In K0(Hotb(A )), [Cone•(f )] = [B•]− [A•].
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K0 group computation

Naive but basic questions:

Given a triangulated category C , what is K0(C )?
Given an additive category, what is K0(Hotb(A ))?
In K0 group, we have seen inverse −[A] and subtraction
[B]− [A]. How about the following alternating sum

[A]− [B] + [C ]− [D] + · · · ?

In K0 group, how about the following linear combination

[X0] + [X1] + · · ·+ [Xn] ?

How about subgroups of K0 group, for instance,

K0(C )' K0(C1)⊕K0(C2)⊕ · · · ⊕K0(Cn).

· · ·
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Reduction

Theorem
Let A be an abelian category. Then K0(Db(A ))' K0(A ).

I am going to demonstrate a low-tech version: let A = Mod(k),
we have K0(Hotb(A ))' K0(A ) = Z.

In order to prove this, consider the following “magic” map
χ : K0(Hotb(A ))→ K0(A ) defined by (Euler characteristic)

χ([A•]) :=
∞
∑

k=−∞
(−1)k [Ak ].

This map χ is well-defined (partially) due to the following exercise.

Exercise
If A• ' B• in Hotb(A ), then

∑

(−1)k [Ak ] =
∑

(−1)k [Bk ] in K0(A ).
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Sketch of the proof
Recall tha map

χ([A•]) =
∞
∑

k=−∞
(−1)k [Ak ] : K0(Hotb(A ))→ K0(A ).

• The map is a homomorphism, and obviously it is surjective.
• This map is also injective, that is, given [A•] such that
χ([A•]) = 0, we claim that [A•] = 0 in K0(Hotb(A )). For instance,
consider

A• = · · · → 0→ A1
dA
1−→ A0→ 0→ ·· · .

The assumption χ([A•]) = 0 implies that [A1] = [A0] in K0(A ).
Consider degree-0 centered complexes

X• = · · · → 0→ A1→ 0→ ·· · and Y• = · · · → 0→ A0→ 0→ ·· · .

Then we have a distinguished triangle, X•
−dA

1−−→ Y•→ A•→ X•[1]
since A• = Cone(−dA

1 ). Therefore,

[A•] = [Cone(−dA
1 )] = [Y•]− [X•] = 0 in K0(Hotb(A )).



Iterated cone decomposition

Definition
Let C be a triangulated category, and X ∈ Obj(C ). An iterated
cone decomposition D of X with linearization (X0,X1, ...,Xn)
where Xi ∈ Obj(C ) consists of a family of distinguished triangles























∆1 : T−1(X1)→ X0→ Y1→ X1
∆2 : T−1(X2)→ Y1→ Y2→ X2

...
∆n−1 : T−1(Xn−1)→ Yn−2→ Yn−1→ Xn
∆n : T−1(Xn)→ Yn−1→ X → Xn

For brevity, a linearization in a cone decomposition D is a denoted
by `(D) = (X0,X1, ...,Xn).

Passing to K0(C ),

[X ] = [Yn−1] + [Xn] = ([Yn−2] + [Xn−1]) + [Xn] = ... =
n
∑

i=0
[Xn].
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Geometric picture
Here is a pictorial way to represent this relation in K0(C ).

X

Xn

X1

X0

D

Geometric meaning of the picture above - Lagrangian cobordism!

Theorem (Biran-Cornea)
Suppose (V ;L0 ∪ ...∪ Ln,L) is a Lagrangian cobordism from L to
(L0, ...,Ln) in M, then there exist X0, ...,Xn ∈ Obj(DFuk(M)) with
X0 = L0 and X ' L such that V provides a cone decomposition D
of X with linearization (X0, ...,Xn).

Remark (Biran-Cornea-Shelukhin)
One can study the size of D (shadow), which provides a
quantitative study of Lagrangian cobordisms.
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Algebraic fragmentation pseudo-metric
Assume we can define w(D) ∈ R≥0, weight of a cone
decomposition. One can give the following definition.

Definition
Let F ⊂ Obj(C ) be a family of objects in C . For two objects
X ,X ′ ∈ Obj(C ), define

δF (X ,X ′) := inf











w(D)

�

�

�

�

�

D is an iterated cone decomposition
of X (in C ) with a linearization as
with `(D) = (F0,F1, ...,X ′, ...,Fk)
with the objects Fi ∈ F , k ∈ N.











.

Moreover, define dF (X ,X ′) := max{δF (X ,X ′),δF (X ′,X )}.

We will call dF an algebraic fragmentation pseudo-metric if
dF satisfies the following triangle inequality,

dF (X ,X ′)≤ dF (X ,X ′′) + dF (X ′′,X ′). (1)
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Use topology to study algebra

Question
How to define a (non-trivial) w(D)?

One answer is from a joint work with P. Biran and O. Cornea (in
progress). The main idea goes as follows.

triangulated persistence category

(underlying category is
persistence category)

NEW!
weight of distinguished triangle

denoted by w(D)

w(D) =
∑

w(∆i)

triangle inequality of dF

(due to a weighted version

of octahedral axiom)

Corollary
Let C be a triangulated persistence category, then (Obj(C ),dF ) is
a topological space, and moreover, it is an H-space.

Example (of a triangulated persistence category)
Ho0(C ) where C is a filtered pre-triangulated dg-category.
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k-linear category and categorical bimodule
• Recall that a k-linear category C is a category where any
hom-set HomC (A,B) is a k-module. (For instance, Hotb(A )
earlier is a k-linear category.)

• A C -bimodule is a functor

M :C op ⊗C →Mod(k),

where recall that Mod(k) is the category of k-module.
Decipher the definition.
(1) For (X ,Y ) ∈ Obj(C op ⊗C ), M(X ,Y ) is a k-module.
(2) For (f ,g) ∈ HomC op⊗C ((X ,Y ), (X ′,Y ′)) = HomC op (X ,X ′)⊗HomC (Y ,Y ′),

M(f ,g) ∈ HomMod(k)(M(X ,Y ),M(X ′,Y ′)),

i.e., for any x ∈M(X ,Y ), M((f ,g))(x) ∈M(X ′,Y ′). In classical format,

HomC op (X ,X ′)⊗M(X ,Y )⊗HomC (Y ,Y ′)→M(X ′,Y ′)

defined by (f ,x ,g) 7→M(f ,g)(x) =: f · x · g .
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Hochschild chain complex
Observe that every k-linear category C is a C -bimodule, that is,
C :C op ⊗C →Mod(k) by C (X ,Y ) = HomC (X ,Y ).

• (complex of C -bimodules) For each n ≥ 0, define

Cn(C ,M) :=
∏

X0,...,Xn

M(Xn,X0)⊗HomC (X0,X1)⊗· · ·⊗HomC (Xn−1,Xn).

Note that Cn(C ,M) is a k-module!

Remark
When n = 0, C0(C ,M) =

∏

X∈Obj(C ) M(X ,X ).

Remark
From the complex above, one should have a feeling that
Hochschild homology is related to cyclic homology.

Consider the following complex (of k-modules),

· · ·
∂3−→ C2(C ,M)

∂2−→ C1(C ,M)
∂1−→ C0(C ,M)→ 0.
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Hochschild boundary operator

The boundary operator ∂n is defined as follows,

∂n(m⊗ a1 ⊗ · · · ⊗ an) =
ma1 ⊗ a2 ⊗ · · · ⊗ an
+
∑n−1

i=1 m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an
+anm⊗ a1 ⊗ · · · ⊗ an−1

.

For a general element m⊗ a1 ⊗ · · · ⊗ an, there are three “compositions”
involved in ∂n.

ma1: M(Xn,X0)⊗HomC (X0,X1)→M(Xn,X1).

aiai+1: HomC (Xi−1,Xi)⊗HomC (Xi ,Xi+1)→ HomC (Xi−1,Xi+1).

anm: HomC (Xn−1,Xn)⊗M(Xn,X0)→M(Xn−1,X0).

Therefore, ∂n : Cn(C ,M)→ Cn−1(C ,M).

Exercise
For any n ≥ 1, ∂n ◦ ∂n+1 = 0.
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Hochschild homology of a k-linear category

Definition
Let C be a k-linear category and M be a C -bimodule. Then the
Hochschild homology of C with coefficient in M is defined by

HH∗(C ,M) := H∗(C•(C ,M),∂•).

If M =C , then for brevity, denote HH∗(C ) := HH∗(C ,C ).

Remark
(1) Adding grading in the k-linear category C leads to a double
complex and spectral sequence. (2) Hochschild cohomology of C
with coefficient in M is defined via HomC op×C (·,M).

Example
If C has only one object, then C is a k-algebra denoted by A, and a
C -bimodule is an A-bimodule. Moreover, HH∗(C ,M) = HH∗(A,M).
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Low degrees computations

Example (Continued from the previous example)
Recall that ∂1(m⊗ a) = ma + am = ma− am. So, im(∂1) = [M,A].
Therefore,

HH0(A,M) = M/[M,A].

In particular, if M = A, then HH0(A) = A/[A,A]. Moreover, if A is
commutative over k, then HH0(A) = A.

Example
If A is commutative over k, then

HH1(A,M) = M ⊗A ΩA/k

where ΩA/k is the (degree-1) Kähler differential of A.

Exercise

HHi(k) =
§ k if i = 0

0 if i ≥ 1 .
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Why do we care about HH∗?

Conjecture (Kontsevich 1994 ICM)
Let M be a compact symplectic manifold. Then

QH∗(M)' HH∗(Fuk(M))

Hence, one recovers quantum ring structure from computation of
the Fukaya category. Under certain conditions, this conjecture is
verified by Ganatra in preprint: Automatically generating Fukaya
categories and computing quantum cohomology (2016-2019).

Theorem (Seidel 2002 ICM, Ganatra 2012)
Let M be a Liouville manifold, and denote by W(M) the wrapped
Fukaya category of M. Then, under a certain condition, one has

SH∗(M)' HH∗(W(M)).

Another important progress: Abouzaid’s generating criterion (Publ.
IHES 2010).
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Desired map f2 (character)

Proposition (cf. Proposition 3.8 in Seidel’s book)
Let C be an enhanced triangulated k-linear category (i.e., a
homotopy category of a pre-triangulated k-linear dg-category).
Then there exists a well-defined homomorphism

f2 : K0(C )→ HH0(C ) by f2([X ]) = [eX ]

for any X ∈ Obj(C ), where eX ∈ HomC (X ,X ) is the identity map.

Note that eX ∈ HomC (X ,X ) ⊂ C0(C ,C ).

Example
Consider C = Hotb(Mod(k)). Recall that K0(C ) = K0(Mod(k)). If
[X ] = [A] + [B] in K0(Mod(k)), then X ' A⊕B. Then

eX = eA⊕B = eA + eB

Then f2([X ]) = [eX ] = [eA] + [eB] = f2([A]) + f2([B]) = f2([A] + [B]).
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