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e The main objects that will be discussed in this talks are
Ky group of a category Ky(+)

and
Hochschild homology of a category HH,(+)

e The motivation of this talk is to understand the map £ in the
following picture,

Ko(DFuk*(M)) > Ko(V(Fuk*(M))")
HH, (VFuk* (M))") 2> H H,(Fuk*(M)) 2> QHM).

from Page 2695 in Biran-Cornea’s Cone-decompositions of
Lagrangian cobordisms in Lefschetz fibrations (Selecta 2017).
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e Algebraic K-theory has a complicated history. Giants were
involved: A. Grothendieck, H. Bass, J. Milnor, D. Quillen, ---.
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e Let .«/ be an abelian category, so one can discuss isomorphism
classes and short exact sequences.

Definition

Ko(.«) is the abelian group freely generated by the isomorphism
classes of objects of ./, denoted by [A] for A € Obj(.«/), modulo
the relation that [B] = [A] 4 [C] if and only if there exists the
following short exact sequence in .

0-A—->B—> C—-0.
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Example

Let .of =Mod(k), the category of k-modules. Then Ky(.2/) ~ Z. Indeed,
for any x = my[AL] + ... + m,[A,] = [V] = [W] in Ky(«), consider the
isomorphism dim,. : Ky(.«/) — Z defined by

dimy(x) = dimy (V) — dim, (W).

S e e




Triangulated category

An abelian category ¥ is called triangulated if there exists an
automorphism T : € — ¥ and triangles as follows,

A: A-»B— C— T(A);

where there is a set of distinguished triangles dista (%) satisfying



Triangulated category

An abelian category ¥ is called triangulated if there exists an
automorphism T : € — ¥ and triangles as follows,

A: A-»B— C— T(A);
where there is a set of distinguished triangles dista (%) satisfying
(TRO) If A" ~ A for A e dista(6), then A’ € dists(€). For any
A€ O0bj(6), AD A—0— All] €dist, (€).
(TR1) Any morphism f : A— B can embed into a A € dist,(¥).
(TR2) If A €disty(€), then T(A), T7H(A) € distp ().
(TR4) The octahedral axiom.
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Let .o/ = Mod(k). Denote by Hot?(.«¢) the homotopy category of
bounded complexes of k-modules.

Obj(Hot?(.«#)) = {A. | A, is a bounded chain complex}

and Homygw( ) = {chain maps}/ ~, where f ~ g means f and g are
homotopic.
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Example

Let .o/ = Mod(k). Denote by Hot?(.«¢) the homotopy category of
bounded complexes of k-modules.

Obj(Hot?(.«#)) = {A. | A, is a bounded chain complex}

and Homygw( ) = {chain maps}/ ~, where f ~ g means f and g are

homotopic. Then Hot?(.«/) is a triangulated category. In particular
T(A,) =A.[1]=A._;.

Usually there are two variants based on the example above.

Example (Variant I)
Let 2(Mod(k)) be a derived category of Mod (k). By definition,

2°(Mod(k)) = Hot”(.«/)[{quasimorphisms} ]

i.e., quasi-isomorphisms are invertible. A famous example is 2°(CohX),
derived category of coherent sheaves on a smooth projective variety X.
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A differential graded category (for brevity, called dg-category) € is a
category consisting of a set of objects Obj(%€) and for any A, B € Obj(¥),

Home, (A, B) is a chain complex of k-modules

such that composition o is a chain map (Leibniz rule).




Example Il

Example (Variant I1)

A differential graded category (for brevity, called dg-category) € is a
category consisting of a set of objects Obj(%€) and for any A, B € Obj(¥),

Home, (A, B) is a chain complex of k-modules

such that composition o is a chain map (Leibniz rule).

@ The degree-0 closed element in Homg (A, B) is a chain map. The
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Example (Variant I1)

A differential graded category (for brevity, called dg-category) € is a
category consisting of a set of objects Obj(%€) and for any A, B € Obj(¥),

Home, (A, B) is a chain complex of k-modules

such that composition o is a chain map (Leibniz rule).

@ The degree-0 closed element in Homg (A, B) is a chain map. The
image of 0, are null homotopy elements.

@ Replace Hom, (A, B) by its homology group, we obtain the
homology category of ¢ denoted by Ho,(%6). In particular,

Homyy, () (A, B) € Hot?(Mod(k)),

where Hoy(6) is called the homotopy category of 6.

A dg-category is a special case of an A,,-category (with operators
{t;}i=1) where u; = differential, u, = composition, and u-, = 0.




About (TR1)

In Hotb(,ef) above, to complete f, : A, — B, into a distinguished
triangle, we use mapping cone Cone,(f) defined as B, & A,[1]
with its k-th differential defined by

B _
geo — [ % ’}—1 B ® Ap[1] = By ® A 4[1].
k 0 di
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About (TR1)

In Hotb(,ef) above, to complete f, : A, — B, into a distinguished
triangle, we use mapping cone Cone,(f) defined as B, & A,[1]
with its k-th differential defined by

df —fi_
d° = ( 9 d/l\( 1) : B @ Ar[1] = By @ A4 [1]-
k—1
Therefore, we get a distinguished triangle,

A5 B, 2 Cone.(f) 2 AJ1].

RENELS

The requirement of (TRO) implies the necessity to work over
homotopy category (instead of the category of chain complexes).

Exercise

| \

The morphism f, : A, — B, is an isomorphism in Hot?(.e), then
Cone,(f) ~ 0 in Hot?(.«7).
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K, group of a triangulated category

Definition

Let € be a triangulated category. Ky(6) is an abelian group freely
generated by the isomorphism classes of objects of €, denotes by
[A] for A€ Obj(€¢), modulo the relation [B] = [A] +[C] if and only
if A=> B— C— T(A) edistp(¥).
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[A] for A€ Obj(€¢), modulo the relation [B] = [A] +[C] if and only
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The first conclusion of (TR0) implies the definition is well-defined.

Example

For any A € Obj(€¢), the second conclusion of (TR0) and (TR2) implies
that A— 0 — T(A) — T(A) edisty(€). Therefore,

0:=[0] = [A]+[T(A)] in Ko(6),

which says [T(A)] = —[A]. This is how “inverse” appears in Ky(€).
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Definition

Let € be a triangulated category. Ky(6) is an abelian group freely
generated by the isomorphism classes of objects of €, denotes by
[A] for A€ Obj(€¢), modulo the relation [B] = [A] +[C] if and only
if A=> B— C— T(A) edistp(¥).

The first conclusion of (TR0) implies the definition is well-defined.

Example

For any A € Obj(€¢), the second conclusion of (TR0) and (TR2) implies
that A— 0 — T(A) — T(A) edisty(€). Therefore,

0:=[0] = [A]+[T(A)] in Ko(6),

which says [T(A)] = —[A]. This is how “inverse” appears in Ky(€).

In Ky(Hot?(.e7)), [Cone,(f)] = [B.] — [A.]-
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Naive but basic questions:



K, group computation

Naive but basic questions:
e Given a triangulated category €, what is Ky(€6)?
o Given an additive category, what is Ko(Hot?(.¢7))?

@ In K, group, we have seen inverse —[A] and subtraction
[B] —[A]. How about the following alternating sum

[Al=[B]+[C]=[D] +--- 7
o In Ky group, how about the following linear combination
[Xol + [Xa] 4+~ +[Xa] 7
@ How about subgroups of K, group, for instance,

Ko(6) =~ Ko(61) ® Ko(62) @ -~ @ Ko (6n)-
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In order to prove this, consider the following “magic” map
¥ : Ko(Hot?(.e#)) — Ky(.of) defined by (Euler characteristic)

oo

2([AD) = D (—1FALL

k=—00



Let .of be an abelian category. Then Ky(2°(.f)) ~ Ky(.o7).

| am going to demonstrate a low-tech version: let . = Mod(k),
we have Koy(Hot?(.«/)) ~ Ky(.o/) = Z.

In order to prove this, consider the following “magic” map
¥ : Ko(Hot?(.e#)) — Ky(.of) defined by (Euler characteristic)

2([A]) : Z( 1) [A]-

This map y is well-defined (partially) due to the following exercise.

If A, =~ B, in Hot?(.&/), then D.(=1)¥[A] = DI(—1)¥[By] in Ko(-).




Sketch of the proof

Recall tha map

oo

2(AD = D, (CDMAL: Ko(Hot" () = Ko(-ef).

k=—00
e The map is a homomorphism, and obviously it is surjective.
e This map is also injective, that is, given [A,] such that
% ([AJ]) =0, we claim that [A,] =0 in Ko(Hot?(.&/)). For instance,
consider .
Ap=—>0—>A — Ay —=0—---.
The assumption y ([A.]) = 0 implies that [A;] = [Ag] in Ko(.o).
Consider degree-0 centered complexes
Xo=+—>0—2>A —-0—>- and YV, =--->20—-2A; 20— ---.

—dA
Then we have a distinguished triangle, X, LY, - A, — X.[1]

since A, = Cone(—d'). Therefore,

[A.] = [Cone(—d{)] = [Y.] = [X.] =0 in Ky(Hot?(.«7)).



Iterated cone decomposition

Definition
Let 6 be a triangulated category, and X € Obj(¢). An iterated

cone decomposition D of X with linearization (Xg, X1, ..., X,)
where X; € Obj(€) consists of a family of distinguished triangles

AV THX) =X - Yi— X
Ay THX) > Vi > Yoo X,

An—1 : T_I(Xn—l) Y Yn—2 = Yn—l i Xn
An : T_I(Xn) — Yn—l - X- Xn

For brevity, a linearization in a cone decomposition D is a denoted
by E(D) = (Xo, X]_, ceey Xn)




Iterated cone decomposition

Definition
Let 6 be a triangulated category, and X € Obj(¢). An iterated

cone decomposition D of X with linearization (Xg, X1, ..., X,)
where X; € Obj(€) consists of a family of distinguished triangles

AV THX) =X - Yi— X
Ay THX) > Vi > Yoo X,

An—1 : T_I(Xn—l) Y Yn—2 = Yn—l i Xn
An : T_I(Xn) — Yn—l - X- Xn

For brevity, a linearization in a cone decomposition D is a denoted
by E(D) = (Xo, X]_, ceey Xn)

Passing to Ky(€),

[X] = [Yaea] + [Xa] = (Vo] + Xoca) + [Xa] = o = D X
i=0



Geometric picture

Here is a pictorial way to represent this relation in Ky(%).

X’ﬂ,

X

Xo
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Here is a pictorial way to represent this relation in Ky(%).

X’ﬂ,

Geometric meaning of the picture above - Lagrangian cobordism!

Theorem (Biran-Cornea)

Suppose (V; LqU...UL,, L) is a Lagrangian cobordism from L to
(Lo, ..., L,) in M, then there exist Xy, ..., X,, € Obj(2Fuk(M)) with
Xo= Ly and X ~ L such that V provides a cone decomposition D
of X with linearization (Xy, ..., X,,).




Geometric picture

Here is a pictorial way to represent this relation in Ky(%).

X’ﬂ,

Geometric meaning of the picture above - Lagrangian cobordism!

Theorem (Biran-Cornea)

Suppose (V; LqU...UL,, L) is a Lagrangian cobordism from L to
(Lo, ..., L,) in M, then there exist Xy, ..., X,, € Obj(2Fuk(M)) with
Xo= Ly and X ~ L such that V provides a cone decomposition D
of X with linearization (Xy, ..., X,,).

Remark (Biran-Cornea-Shelukhin)

One can study the size of D (shadow), which provides a
quantitative study of Lagrangian cobordisms.
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Let & C Obj(¥) be a family of objects in 6. For two objects
X, X" € Obj(€), define

D is an iterated cone decomposition
of X (in €) with a linearization as
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Algebraic fragmentation pseudo-metric

Assume we can define w(D) € Ry, weight of a cone
decomposition. One can give the following definition.

Definition
Let & C Obj(¥) be a family of objects in 6. For two objects
X, X" € Obj(€), define

D is an iterated cone decomposition
of X (in €) with a linearization as
with £(D) = (Fo, F1, .0, X5 ety i)
with the objects F; € #, k€ N.

57(X,X') :=inf{ w(D)

Moreover, define dZ (X, X’) := max{67 (X, X"), 57 (X, X)}.

We will call d7 an algebraic fragmentation pseudo-metric if
d”? satisfies the following triangle inequality,

d7 (X, X') < d7(X,X")+d7 (X", X). (1)
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How to define a (non-trivial) w(D)?

One answer is from a joint work with P. Biran and O. Cornea (in
progress). The main idea goes as follows.

NEW! A o
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denoted by w(D triangle inequality of d”
triangulated persistence category / y w(D) . .
. K (due to a weighted version
(underlying category is .
persistence category) of octahedral axiom)

w(D) =Y w(A;)

Let 6 be a triangulated persistence category, then (Obj(€),d”) is
a topological space, and moreover, it is an H-space.




Use topology to study algebra

How to define a (non-trivial) w(D)?

One answer is from a joint work with P. Biran and O. Cornea (in
progress). The main idea goes as follows.

NEW! A o
‘ weight of distinguished triangle
denoted by w(D triangle inequality of d”
triangulated persistence category / y w(D) . .
. K (due to a weighted version
(underlying category is .
persistence category) of octahedral axiom)

w(D) =Y w(A;)

Let 6 be a triangulated persistence category, then (Obj(€),d”) is
a topological space, and moreover, it is an H-space.

Example (of a triangulated persistence category)
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where recall that Mod(k) is the category of k-module.
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(1) For (X,Y)e€Obj(¢?® %), M(X,Y) is a k-module.
(2) For (f,g) € Homgopgy (X, Y), (X', Y’)) = Homgop (X, X) ® Home (Y, Y’),

M(f: g) € HomMOd(k)(M(XJ Y)’ M(X/; Y/));

i.e., for any x € M(X,Y), M((f,g))(x) e M(X',Y").



k-linear category and categorical bimodule

e Recall that a k-linear category € is a category where any
hom-set Home (A, B) is a k-module. (For instance, Hot?(.¢)
earlier is a k-linear category.)

e A %é-bimodule is a functor
M : 6°° ® € — Mod(k),

where recall that Mod(k) is the category of k-module.

Decipher the definition.
(1) For (X,Y)e€Obj(¢?® %), M(X,Y) is a k-module.
(2) For (f,g) € Homgopgy (X, Y), (X', Y’)) = Homgop (X, X) ® Home (Y, Y’),

M(f: g) € HomMOd(k)(M(XJ Y)’ M(X/) Y/));
i.e., for any x € M(X,Y), M((f,g))(x) € M(X’,Y’). In classical format,
Homyop (X, X') ® M(X,Y)®Hom(Y,Y') > M(X',Y)

defined by (f,x,g)— M(f,g)(x)=:f-x-g.



Hochschild chain complex

Observe that every k-linear category € is a 6-bimodule, that is,
% : 6°°P® ¢ — Mod(k) by €(X,Y)=Hom¢(X,Y).



Hochschild chain complex

Observe that every k-linear category € is a 6-bimodule, that is,
% : 6°°P® ¢ — Mod(k) by €(X,Y)=Hom¢(X,Y).

e (complex of 6¢-bimodules) For each n> 0, define

Co(6,M) = [] M(X, Xo)&Home (Xo, X1)®: - @Home (X1, X,).

Note that C,(¢, M) is a k-module!



Hochschild chain complex

Observe that every k-linear category € is a 6-bimodule, that is,
% :6°°Q® ¢ — Mod(k) by €(X,Y)=Homg(X,Y).

e (complex of 6¢-bimodules) For each n> 0, define

Co(6,M) = [] M(X, Xo)&Home (Xo, X1)®: - @Home (X1, X,).

Note that C,(¢, M) is a k-module!

When n=0, Go(€¢, M) = [ [ xconj(s) M(X, X).




Hochschild chain complex

Observe that every k-linear category € is a 6-bimodule, that is,
% :6°°Q® ¢ — Mod(k) by €(X,Y)=Homg(X,Y).

e (complex of 6¢-bimodules) For each n> 0, define

Co(6,M) = [] M(X, Xo)&Home (Xo, X1)®: - @Home (X1, X,).

Note that C,(¢, M) is a k-module!

RENELS
When n=0, Go(€¢, M) = [ [ xconj(s) M(X, X).

From the complex above, one should have a feeling that
Hochschild homology is related to cyclic homology.
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Hochschild chain complex

Observe that every k-linear category € is a 6-bimodule, that is,
% :6°°Q® ¢ — Mod(k) by €(X,Y)=Homg(X,Y).

e (complex of 6¢-bimodules) For each n> 0, define

Co(6,M) = [] M(X, Xo)&Home (Xo, X1)®: - @Home (X1, X,).

Note that C,(¢, M) is a k-module!

RENELS
When n=0, Go(€¢, M) = [ [ xconj(s) M(X, X).

RENEILS

| A

From the complex above, one should have a feeling that
Hochschild homology is related to cyclic homology.

\

Consider the following complex (of k-modules),

o o, 0
e Cy(6, M) Ci(6, M) = Co(€, M) — 0.
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Hochschild boundary operator

The boundary operator J, is defined as follows,

ma;®a,®---®a,
—1
p(m®a;®:---®a,)= 4+, mM®a® - ®aa,;® -®a, .
+a,m®a; ®---®a,_1

For a general element m® a; ® --- ® a,,, there are three “compositions”
involved in &,.

@ ma;:  M(X,,Xy) ® Homy (Xp, X;) = M(X,,, X;).
© 3;a;1: Homy (X1, X;) ® Hom (X, Xiy 1) — Home (Xj_1, X 1)
® a,m:  Homy (X, 1,X,)®M(X,, Xo) = M(X,_1, Xp).

Therefore, 8, : C,(€, M) — C,_1(€, M).

Forany n>1, 8,00,,; =0.
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Hochschild homology of a k-linear category

Definition

Let € be a k-linear category and M be a 6-bimodule. Then the
Hochschild homology of ¢ with coefficient in M is defined by

HH, (%, M) := H.(C.(6, M), d,).

If M = <€, then for brevity, denote HH,(¢) := HH, (¢, ¢).

(1) Adding grading in the k-linear category ¢ leads to a double
complex and spectral sequence. (2) Hochschild cohomology of €
with coefficient in M is defined via Homeopy 4 (+, M).




Hochschild homology of a k-linear category

Definition

Let € be a k-linear category and M be a 6-bimodule. Then the
Hochschild homology of ¢ with coefficient in M is defined by

HH, (%, M) := H.(C.(6, M), d,).

If M = <€, then for brevity, denote HH,(¢) := HH, (¢, ¢).

Remark

(1) Adding grading in the k-linear category ¢ leads to a double
complex and spectral sequence. (2) Hochschild cohomology of €
with coefficient in M is defined via Homeopy 4 (+, M).

| \

Example

If € has only one object, then € is a k-algebra denoted by A, and a
% -bimodule is an A-bimodule. Moreover, HH, (%, M) = HH, (A, M).




Low degrees computations

Example (Continued from the previous example)

Recall that 8,(m ® a) = ma+ am = ma— am. So, im(9,) = [M, A].
Therefore,
HH, (A, M) = M/[M, A].

In particular, if M = A, then HHy(A) = A/[A, A]. Moreover, if A is
commutative over k, then HHy(A) = A.
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Example (Continued from the previous example)

Recall that 8,(m ® a) = ma+ am = ma— am. So, im(9,) = [M, A].
Therefore,
HH, (A, M) = M/[M, A].

In particular, if M = A, then HHy(A) = A/[A, A]. Moreover, if A is
commutative over k, then HHy(A) = A.

If A is commutative over k, then

HH]_(A, M) = M®A QA/k

where Q) is the (degree-1) Kahler differential of A.




Low degrees computations

Example (Continued from the previous example)

Recall that 8,(m ® a) = ma+ am = ma— am. So, im(9,) = [M, A].
Therefore,

HHy (A, M) = M/[M, A].
In particular, if M = A, then HHy(A) = A/[A, A]. Moreover, if A is
commutative over k, then HHy(A) = A.

Example

If A is commutative over k, then
HH; (A, M) = M ®4 Q¢

where Q) is the (degree-1) Kahler differential of A.

Exercise




Why do we care about HH,?

Conjecture (Kontsevich 1994 ICM)

Let M be a compact symplectic manifold. Then

QH*(M) ~ HH*(Fuk(M))
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Let M be a compact symplectic manifold. Then

QH*(M) ~ HH* (Fuk(M))

Hence, one recovers quantum ring structure from computation of
the Fukaya category. Under certain conditions, this conjecture is
verified by Ganatra in preprint: Automatically generating Fukaya
categories and computing quantum cohomology (2016-2019).



Why do we care about HH,?

Conjecture (Kontsevich 1994 ICM)

Let M be a compact symplectic manifold. Then

QH*(M) ~ HH* (Fuk(M))

Hence, one recovers quantum ring structure from computation of
the Fukaya category. Under certain conditions, this conjecture is
verified by Ganatra in preprint: Automatically generating Fukaya
categories and computing quantum cohomology (2016-2019).

Theorem (Seidel 2002 ICM, Ganatra 2012)

Let M be a Liouville manifold, and denote by W(M) the wrapped
Fukaya category of M. Then, under a certain condition, one has

SH*(M) ~ HH*(W(M)).

Another important progress: Abouzaid's generating criterion (Publ.
IHES 2010).



Desired map f, (character)

Proposition (cf. Proposition 3.8 in Seidel's book)

Let 6 be an enhanced triangulated k-linear category (i.e., a
homotopy category of a pre-triangulated k-linear dg-category).
Then there exists a well-defined homomorphism

fo: Ko(6) = HHo(6¢) by h([X]) = [ex]

for any X € Obj(6), where ex € Hom (X, X) is the identity map.

Note that ex € Hom (X, X) € Co(€6, 6).



Desired map f, (character)

Proposition (cf. Proposition 3.8 in Seidel's book)

Let 6 be an enhanced triangulated k-linear category (i.e., a
homotopy category of a pre-triangulated k-linear dg-category).
Then there exists a well-defined homomorphism

fo: Ko(6) = HHo(6¢) by h([X]) = [ex]

for any X € Obj(6), where ex € Hom (X, X) is the identity map.

Note that ex € Hom (X, X) € Co(€6, 6).

Example

Consider 6 = Hot?(Mod(k)). Recall that Ky(€) = Ky(Mod(k)). If
[X]=[A] +[B] in Ky(Mod(k)), then X ~ A& B. Then

€x = €xgp = €4t €p

Then 6([X]) = [ex] = [ea] + [e] = £ ([A]) + £([B]) = L([A] + [B])-




