Algebraic K-theory in symplectic geometry

Jun Zhang

CRM - Université de Montréal

July 21, 2020

Motivation

• The main objects that will be discussed in this talks are

$$K_0$$
 group of a category $K_0(\cdot)$

and

Hochschild homology of a category $\,\mathrm{HH}_*(\cdot)\,$

Motivation

• The main objects that will be discussed in this talks are

$$K_0$$
 group of a category $K_0(\cdot)$

and

Hochschild homology of a category $HH_*(\cdot)$

ullet The motivation of this talk is to understand the map f_2 in the following picture,

$$\begin{array}{ccc} K_0(D\mathcal{F}uk^*(M)) & \xrightarrow{f_1} & K_0(\mathcal{Y}(\mathcal{F}uk^*(M))^{\wedge}) \\ & \xrightarrow{f_2} & HH_*(\mathcal{Y}(\mathcal{F}uk^*(M))^{\wedge}) & \xrightarrow{f_3} & HH_*(\mathcal{F}uk^*(M)) & \xrightarrow{f_4} & QH(M). \end{array}$$

from Page 2695 in Biran-Cornea's Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations (Selecta 2017).

K_0 group of an abelian category

• Algebraic K-theory has a complicated history. Giants were involved: A. Grothendieck, H. Bass, J. Milnor, D. Quillen,

K_0 group of an abelian category

- Algebraic K-theory has a complicated history. Giants were involved: A. Grothendieck, H. Bass, J. Milnor, D. Quillen,
- \bullet Let ${\mathscr A}$ be an abelian category, so one can discuss isomorphism classes and short exact sequences.

Definition

 $\mathcal{K}_0(\mathscr{A})$ is the abelian group freely generated by the isomorphism classes of objects of \mathscr{A} , denoted by [A] for $A \in \mathrm{Obj}(\mathscr{A})$, modulo the relation that [B] = [A] + [C] if and only if there exists the following short exact sequence in \mathscr{A}

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$
.

K_0 group of an abelian category

- Algebraic K-theory has a complicated history. Giants were involved: A. Grothendieck, H. Bass, J. Milnor, D. Quillen,
- \bullet Let $\mathscr A$ be an abelian category, so one can discuss isomorphism classes and short exact sequences.

Definition

 $\mathcal{K}_0(\mathscr{A})$ is the abelian group freely generated by the isomorphism classes of objects of \mathscr{A} , denoted by [A] for $A \in \mathrm{Obj}(\mathscr{A})$, modulo the relation that [B] = [A] + [C] if and only if there exists the following short exact sequence in \mathscr{A}

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$
.

Example

Let $\mathscr{A}=\operatorname{Mod}(\mathbf{k})$, the category of **k**-modules. Then $K_0(\mathscr{A})\simeq \mathbb{Z}$. Indeed, for any $x=m_1[A_1]+...+m_n[A_n]=[V]-[W]$ in $K_0(\mathscr{A})$, consider the isomorphism $\dim_{\mathbf{k}}:K_0(\mathscr{A})\to \mathbb{Z}$ defined by

$$\dim_{\mathbf{k}}(x) = \dim_{\mathbf{k}}(V) - \dim_{\mathbf{k}}(W).$$

Triangulated category

An abelian category $\mathscr C$ is called **triangulated** if there exists an automorphism $\mathcal T:\mathscr C\to\mathscr C$ and *triangles* as follows,

$$\Delta: A \to B \to C \to T(A);$$

where there is a set of distinguished triangles $\mathrm{dist}_\Delta(\mathscr{C})$ satisfying

Triangulated category

An abelian category $\mathscr C$ is called **triangulated** if there exists an automorphism $T:\mathscr C\to\mathscr C$ and *triangles* as follows,

$$\Delta: A \to B \to C \to T(A);$$

where there is a set of distinguished triangles $\operatorname{dist}_{\Delta}(\mathscr{C})$ satisfying (TR0) If $\Delta' \simeq \Delta$ for $\Delta \in \operatorname{dist}_{\Delta}(\mathscr{C})$, then $\Delta' \in \operatorname{dist}_{\Delta}(\mathscr{C})$. For any $A \in \operatorname{Obj}(\mathscr{C})$, $A \stackrel{e_A}{\longrightarrow} A \to 0 \to A[1] \in \operatorname{dist}_{\Delta}(\mathscr{C})$. (TR1) Any morphism $f: A \to B$ can embed into a $\Delta \in \operatorname{dist}_{\Delta}(\mathscr{C})$. (TR2) If $\Delta \in \operatorname{dist}_{\Delta}(\mathscr{C})$, then $T(\Delta), T^{-1}(\Delta) \in \operatorname{dist}_{\Delta}(\mathscr{C})$.

(TR4) The octahedral axiom.

Example

Let $\mathscr{A} = \operatorname{Mod}(\mathbf{k})$. Denote by $\operatorname{Hot}^b(\mathscr{A})$ the homotopy category of bounded complexes of \mathbf{k} -modules.

$$Obj(Hot^b(\mathscr{A})) = \{A_{\bullet} \mid A_{\bullet} \text{ is a bounded chain complex}\}$$

and $\operatorname{Hom}_{\operatorname{Hot^b}(\mathscr{A})} = \{\operatorname{chain\ maps}\}/\sim$, where $f \sim g$ means f and g are homotopic.

Example

Let $\mathscr{A} = \operatorname{Mod}(\mathbf{k})$. Denote by $\operatorname{Hot}^b(\mathscr{A})$ the homotopy category of bounded complexes of \mathbf{k} -modules.

$$Obj(Hot^b(\mathscr{A})) = \{A_{\bullet} \mid A_{\bullet} \text{ is a bounded chain complex}\}$$

and $\operatorname{Hom}_{\operatorname{Hot}^b(\mathscr{A})} = \{\operatorname{chain\ maps}\}/\sim$, where $f\sim g$ means f and g are homotopic. Then $\operatorname{Hot}^b(\mathscr{A})$ is a triangulated category. In particular $T(A_{\bullet}) = A_{\bullet}[1] = A_{\bullet-1}$.

Example

Let $\mathscr{A} = \operatorname{Mod}(\mathbf{k})$. Denote by $\operatorname{Hot}^b(\mathscr{A})$ the homotopy category of bounded complexes of \mathbf{k} -modules.

$$Obj(Hot^{b}(\mathscr{A})) = \{A_{\bullet} \mid A_{\bullet} \text{ is a bounded chain complex}\}\$$

and $\operatorname{Hom}_{\operatorname{Hot}^b(\mathscr{A})} = \{\operatorname{chain\ maps}\}/\sim$, where $f\sim g$ means f and g are homotopic. Then $\operatorname{Hot}^b(\mathscr{A})$ is a triangulated category. In particular $T(A_{\bullet}) = A_{\bullet}[1] = A_{\bullet-1}$.

Usually there are two variants based on the example above.

Example (Variant I)

Let $\mathscr{D}(\mathrm{Mod}(\mathbf{k}))$ be a derived category of $\mathrm{Mod}(\mathbf{k})$. By definition,

$$\mathcal{D}^b(\text{Mod}(\mathbf{k})) = \text{Hot}^b(\mathcal{A})[\{\text{quasimorphisms}\}^{-1}]$$

i.e., quasi-isomorphisms are invertible. A famous example is $\mathcal{D}^b(\operatorname{Coh} X)$, derived category of coherent sheaves on a smooth projective variety X.

Example (Variant II)

A differential graded category (for brevity, called **dg-category**) $\mathscr C$ is a category consisting of a set of objects $\mathrm{Obj}(\mathscr C)$ and for any $A,B\in\mathrm{Obj}(\mathscr C)$,

 $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain complex of **k**-modules

such that composition \circ is a chain map (Leibniz rule).

Example (Variant II)

A differential graded category (for brevity, called $\operatorname{dg-category}$) $\mathscr C$ is a category consisting of a set of objects $\operatorname{Obj}(\mathscr C)$ and for any $A,B\in\operatorname{Obj}(\mathscr C)$,

 $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain complex of **k**-modules

such that composition ∘ is a chain map (Leibniz rule).

• The degree-0 closed element in $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain map. The image of ∂_1 are null homotopy elements.

Example (Variant II)

A differential graded category (for brevity, called **dg-category**) \mathscr{C} is a category consisting of a set of objects $Obj(\mathscr{C})$ and for any $A, B \in Obj(\mathscr{C})$,

 $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain complex of **k**-modules

such that composition o is a chain map (Leibniz rule).

- The degree-0 closed element in $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain map. The image of ∂_1 are null homotopy elements.
- Replace $\operatorname{Hom}_{\mathscr{C}}(A,B)$ by its homology group, we obtain the **homology category** of \mathscr{C} denoted by $\operatorname{Ho}_{\bullet}(\mathscr{C})$. In particular,

$$\operatorname{Hom}_{\operatorname{Ho}_0(\mathscr{C})}(A, B) \in \operatorname{Hot}^b(\operatorname{Mod}(\mathbf{k})),$$

where $Ho_0(\mathscr{C})$ is called the **homotopy category** of \mathscr{C} .

Example (Variant II)

A differential graded category (for brevity, called **dg-category**) \mathscr{C} is a category consisting of a set of objects $Obj(\mathscr{C})$ and for any $A, B \in Obj(\mathscr{C})$,

 $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain complex of **k**-modules

such that composition ∘ is a chain map (Leibniz rule).

- The degree-0 closed element in $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a chain map. The image of ∂_1 are null homotopy elements.
- Replace $\operatorname{Hom}_{\mathscr{C}}(A,B)$ by its homology group, we obtain the homology category of \mathscr{C} denoted by $\operatorname{Ho}_{\bullet}(\mathscr{C})$. In particular,

$$\operatorname{Hom}_{\operatorname{Ho}_0(\mathscr{C})}(A, B) \in \operatorname{Hot}^b(\operatorname{Mod}(\mathbf{k})),$$

where $Ho_0(\mathscr{C})$ is called the **homotopy category** of \mathscr{C} .

Remark

A dg-category is a special case of an A_{∞} -category (with operators $\{\mu_i\}_{i\geq 1}$) where $\mu_1=$ differential, $\mu_2=$ composition, and $\mu_{\geq 3}=0$.

About (TR1)

In $\operatorname{Hot}^b(\mathscr{A})$ above, to complete $f_{\bullet}:A_{\bullet}\to B_{\bullet}$ into a distinguished triangle, we use **mapping cone** $\operatorname{Cone}_{\bullet}(f)$ defined as $B_{\bullet}\oplus A_{\bullet}[1]$ with its k-th differential defined by

$$d_k^{\text{co}} := \begin{pmatrix} d_k^B & -f_{k-1} \\ 0 & d_{k-1}^A \end{pmatrix} : B_k \oplus A_k[1] \to B_{k-1} \oplus A_{k-1}[1].$$

About (TR1)

In $\operatorname{Hot}^b(\mathscr{A})$ above, to complete $f_{\bullet}:A_{\bullet}\to B_{\bullet}$ into a distinguished triangle, we use **mapping cone** $\operatorname{Cone}_{\bullet}(f)$ defined as $B_{\bullet}\oplus A_{\bullet}[1]$ with its k-th differential defined by

$$d_k^{\text{co}} := \begin{pmatrix} d_k^B & -f_{k-1} \\ 0 & d_{k-1}^A \end{pmatrix} : B_k \oplus A_k[1] \to B_{k-1} \oplus A_{k-1}[1].$$

Therefore, we get a distinguished triangle,

$$A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{i_B} \operatorname{Cone}_{\bullet}(f) \xrightarrow{\pi_A} A_{\bullet}[1].$$

Remark

The requirement of (TR0) implies the necessity to work over homotopy category (instead of the category of chain complexes).

About (TR1)

In $\operatorname{Hot}^b(\mathcal{A})$ above, to complete $f_{\bullet}:A_{\bullet}\to B_{\bullet}$ into a distinguished triangle, we use **mapping cone** $\operatorname{Cone}_{\bullet}(f)$ defined as $B_{\bullet}\oplus A_{\bullet}[1]$ with its k-th differential defined by

$$d_k^{\text{co}} := \begin{pmatrix} d_k^B & -f_{k-1} \\ 0 & d_{k-1}^A \end{pmatrix} : B_k \oplus A_k[1] \to B_{k-1} \oplus A_{k-1}[1].$$

Therefore, we get a distinguished triangle,

$$A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{i_B} \operatorname{Cone}_{\bullet}(f) \xrightarrow{\pi_A} A_{\bullet}[1].$$

Remark

The requirement of (TR0) implies the necessity to work over homotopy category (instead of the category of chain complexes).

Exercise

The morphism $f_{\bullet}: A_{\bullet} \to B_{\bullet}$ is an isomorphism in $\operatorname{Hot}^b(\mathscr{A})$, then $\operatorname{Cone}_{\bullet}(f) \simeq 0$ in $\operatorname{Hot}^b(\mathscr{A})$.

Definition

Let $\mathscr C$ be a triangulated category. $K_0(\mathscr C)$ is an abelian group freely generated by the isomorphism classes of objects of $\mathscr C$, denotes by [A] for $A\in \mathrm{Obj}(\mathscr C)$, modulo the relation [B]=[A]+[C] if and only if $A\to B\to C\to T(A)\in \mathrm{dist}_\Delta(\mathscr C)$.

Definition

Let $\mathscr C$ be a triangulated category. $K_0(\mathscr C)$ is an abelian group freely generated by the isomorphism classes of objects of $\mathscr C$, denotes by [A] for $A\in \mathrm{Obj}(\mathscr C)$, modulo the relation [B]=[A]+[C] if and only if $A\to B\to C\to \mathcal T(A)\in \mathrm{dist}_\Delta(\mathscr C)$.

Remark

The first conclusion of (TR0) implies the definition is well-defined.

Definition

Let $\mathscr C$ be a triangulated category. $K_0(\mathscr C)$ is an abelian group freely generated by the isomorphism classes of objects of $\mathscr C$, denotes by [A] for $A\in \mathrm{Obj}(\mathscr C)$, modulo the relation [B]=[A]+[C] if and only if $A\to B\to C\to T(A)\in \mathrm{dist}_\Delta(\mathscr C)$.

Remark

The first conclusion of (TR0) implies the definition is well-defined.

Example

For any $A \in \mathrm{Obj}(\mathscr{C})$, the second conclusion of (TR0) and (TR2) implies that $A \to 0 \to T(A) \to T(A) \in \mathrm{dist}_{\Delta}(\mathscr{C})$. Therefore,

$$0 := [0] = [A] + [T(A)]$$
 in $K_0(\mathscr{C})$,

which says [T(A)] = -[A]. This is how "inverse" appears in $K_0(\mathscr{C})$.

Definition

Let $\mathscr C$ be a triangulated category. $K_0(\mathscr C)$ is an abelian group freely generated by the isomorphism classes of objects of $\mathscr C$, denotes by [A] for $A\in \mathrm{Obj}(\mathscr C)$, modulo the relation [B]=[A]+[C] if and only if $A\to B\to C\to \mathcal T(A)\in \mathrm{dist}_\Delta(\mathscr C)$.

Remark

The first conclusion of (TR0) implies the definition is well-defined.

Example

For any $A \in \text{Obj}(\mathscr{C})$, the second conclusion of (TR0) and (TR2) implies that $A \to 0 \to T(A) \to T(A) \in \text{dist}_{\Lambda}(\mathscr{C})$. Therefore,

$$0 := [0] = [A] + [T(A)]$$
 in $K_0(\mathscr{C})$,

which says [T(A)] = -[A]. This is how "inverse" appears in $K_0(\mathscr{C})$.

$$\operatorname{In} \ K_0(\operatorname{Hot}^b(\mathscr{A})), \ [\operatorname{Cone}_{\bullet}(f)] = [B_{\bullet}] - [A_{\bullet}].$$

$\overline{K_0}$ group computation

Naive but basic questions:

K_0 group computation

Naive but basic questions:

- Given a triangulated category \mathscr{C} , what is $K_0(\mathscr{C})$?
- Given an additive category, what is $K_0(\operatorname{Hot}^b(\mathscr{A}))$?
- In K_0 group, we have seen inverse -[A] and subtraction [B]-[A]. How about the following alternating sum

$$[A] - [B] + [C] - [D] + \cdots$$
?

• In K_0 group, how about the following linear combination

$$[X_0] + [X_1] + \cdots + [X_n]$$
?

• How about subgroups of K_0 group, for instance,

$$K_0(\mathscr{C}) \simeq K_0(\mathscr{C}_1) \oplus K_0(\mathscr{C}_2) \oplus \cdots \oplus K_0(\mathscr{C}_n).$$

Theorem

Let \mathscr{A} be an abelian category. Then $K_0(\mathscr{D}^b(\mathscr{A})) \simeq K_0(\mathscr{A})$.

Theorem

Let \mathscr{A} be an abelian category. Then $K_0(\mathscr{D}^b(\mathscr{A})) \simeq K_0(\mathscr{A})$.

I am going to demonstrate a low-tech version: let $\mathscr{A}=\operatorname{Mod}(\mathbf{k})$, we have $K_0(\operatorname{Hot}^b(\mathscr{A}))\simeq K_0(\mathscr{A})=\mathbb{Z}$.

Theorem

Let \mathscr{A} be an abelian category. Then $K_0(\mathscr{D}^b(\mathscr{A})) \simeq K_0(\mathscr{A})$.

I am going to demonstrate a low-tech version: let $\mathscr{A}=\operatorname{Mod}(\mathbf{k})$, we have $K_0(\operatorname{Hot}^b(\mathscr{A}))\simeq K_0(\mathscr{A})=\mathbb{Z}$.

In order to prove this, consider the following "magic" map $\chi: K_0(\operatorname{Hot}^b(\mathscr{A})) \to K_0(\mathscr{A})$ defined by (Euler characteristic)

$$\chi([A_{\bullet}]) := \sum_{k=-\infty}^{\infty} (-1)^{k} [A_{k}].$$

Theorem

Let \mathscr{A} be an abelian category. Then $K_0(\mathscr{D}^b(\mathscr{A})) \simeq K_0(\mathscr{A})$.

I am going to demonstrate a low-tech version: let $\mathscr{A}=\operatorname{Mod}(\mathbf{k})$, we have $K_0(\operatorname{Hot}^b(\mathscr{A}))\simeq K_0(\mathscr{A})=\mathbb{Z}$.

In order to prove this, consider the following "magic" map $\chi: K_0(\operatorname{Hot}^b(\mathscr{A})) \to K_0(\mathscr{A})$ defined by (Euler characteristic)

$$\chi([A_{\bullet}]) := \sum_{k=-\infty}^{\infty} (-1)^{k} [A_{k}].$$

This map χ is well-defined (partially) due to the following exercise.

Exercise

If $A_{\bullet} \simeq B_{\bullet}$ in $\operatorname{Hot}^b(\mathscr{A})$, then $\sum (-1)^k [A_k] = \sum (-1)^k [B_k]$ in $K_0(\mathscr{A})$.

Sketch of the proof

Recall tha map

$$\chi([A_{\bullet}]) = \sum_{k=-\infty}^{\infty} (-1)^{k} [A_{k}] : \ \mathcal{K}_{0}(\operatorname{Hot}^{b}(\mathscr{A})) \to \mathcal{K}_{0}(\mathscr{A}).$$

- The map is a homomorphism, and obviously it is surjective.
- This map is also injective, that is, given $[A_{\bullet}]$ such that $\chi([A_{\bullet}]) = 0$, we claim that $[A_{\bullet}] = 0$ in $K_0(\operatorname{Hot}^b(\mathscr{A}))$. For instance, consider

$$A_{\bullet} = \cdots \to 0 \to A_1 \xrightarrow{d_1^A} A_0 \to 0 \to \cdots$$

The assumption $\chi([A_{\bullet}]) = 0$ implies that $[A_1] = [A_0]$ in $K_0(\mathscr{A})$. Consider degree-0 centered complexes

$$X_{\bullet} = \cdots \to 0 \to A_1 \to 0 \to \cdots$$
 and $Y_{\bullet} = \cdots \to 0 \to A_0 \to 0 \to \cdots$.

Then we have a distinguished triangle, $X_{\bullet} \xrightarrow{-d_1^A} Y_{\bullet} \to A_{\bullet} \to X_{\bullet}$ [1] since $A_{\bullet} = \text{Cone}(-d_1^A)$. Therefore,

$$[A_{\bullet}] = [\operatorname{Cone}(-d_1^A)] = [Y_{\bullet}] - [X_{\bullet}] = 0 \text{ in } K_0(\operatorname{Hot}^b(\mathscr{A})).$$

Iterated cone decomposition

Definition

Let $\mathscr C$ be a triangulated category, and $X \in \mathrm{Obj}(\mathscr C)$. An **iterated** cone decomposition D of X with linearization $(X_0, X_1, ..., X_n)$ where $X_i \in \mathrm{Obj}(\mathscr C)$ consists of a family of distinguished triangles

$$\begin{cases} \Delta_1: & T^{-1}(X_1) \rightarrow X_0 \rightarrow Y_1 \rightarrow X_1 \\ \Delta_2: & T^{-1}(X_2) \rightarrow Y_1 \rightarrow Y_2 \rightarrow X_2 \\ & \vdots \\ \Delta_{n-1}: & T^{-1}(X_{n-1}) \rightarrow Y_{n-2} \rightarrow Y_{n-1} \rightarrow X_n \\ \Delta_n: & T^{-1}(X_n) \rightarrow Y_{n-1} \rightarrow X \rightarrow X_n \end{cases}$$

For brevity, a linearization in a cone decomposition D is a denoted by $\ell(D)=(X_0,X_1,...,X_n)$.

Iterated cone decomposition

Definition

Let \mathscr{C} be a triangulated category, and $X \in \text{Obj}(\mathscr{C})$. An **iterated** cone decomposition D of X with linearization $(X_0, X_1, ..., X_n)$ where $X_i \in \text{Obj}(\mathscr{C})$ consists of a family of distinguished triangles

$$\begin{cases} \Delta_1: & T^{-1}(X_1) \rightarrow X_0 \rightarrow Y_1 \rightarrow X_1 \\ \Delta_2: & T^{-1}(X_2) \rightarrow Y_1 \rightarrow Y_2 \rightarrow X_2 \\ & \vdots \\ \Delta_{n-1}: & T^{-1}(X_{n-1}) \rightarrow Y_{n-2} \rightarrow Y_{n-1} \rightarrow X_n \\ \Delta_n: & T^{-1}(X_n) \rightarrow Y_{n-1} \rightarrow X \rightarrow X_n \end{cases}$$

For brevity, a linearization in a cone decomposition D is a denoted by $\ell(D) = (X_0, X_1, ..., X_n)$.

Passing to $K_0(\mathscr{C})$,

$$[X] = [Y_{n-1}] + [X_n] = ([Y_{n-2}] + [X_{n-1}]) + [X_n] = \dots = \sum_{i=0}^{n} [X_n].$$

Geometric picture

Here is a pictorial way to represent this relation in $K_0(\mathscr{C})$.

Geometric picture

Here is a pictorial way to represent this relation in $K_0(\mathscr{C})$.

Geometric meaning of the picture above - Lagrangian cobordism!

Theorem (Biran-Cornea)

Suppose $(V; L_0 \cup ... \cup L_n, L)$ is a Lagrangian cobordism from L to $(L_0, ..., L_n)$ in M, then there exist $X_0, ..., X_n \in \text{Obj}(\mathscr{D}\text{Fuk}(M))$ with $X_0 = L_0$ and $X \simeq L$ such that V provides a cone decomposition D of X with linearization $(X_0, ..., X_n)$.

Geometric picture

Here is a pictorial way to represent this relation in $K_0(\mathscr{C})$.

Geometric meaning of the picture above - Lagrangian cobordism!

Theorem (Biran-Cornea)

Suppose $(V; L_0 \cup ... \cup L_n, L)$ is a Lagrangian cobordism from L to $(L_0, ..., L_n)$ in M, then there exist $X_0, ..., X_n \in \mathrm{Obj}(\mathscr{D}\mathrm{Fuk}(M))$ with $X_0 = L_0$ and $X \simeq L$ such that V provides a cone decomposition D of X with linearization $(X_0, ..., X_n)$.

Remark (Biran-Cornea-Shelukhin)

One can study the size of D (**shadow**), which provides a quantitative study of Lagrangian cobordisms.

Algebraic fragmentation pseudo-metric

Assume we can define $w(D) \in \mathbb{R}_{\geq 0}$, weight of a cone decomposition. One can give the following definition.

Algebraic fragmentation pseudo-metric

Assume we can define $w(D) \in \mathbb{R}_{\geq 0}$, weight of a cone decomposition. One can give the following definition.

Definition

Let $\mathscr{F}\subset \mathrm{Obj}(\mathscr{C})$ be a family of objects in \mathscr{C} . For two objects $X,X'\in \mathrm{Obj}(\mathscr{C})$, define

$$\delta^{\mathscr{F}}(X,X') := \inf \left\{ w(D) \middle| \begin{array}{l} D \text{ is an iterated cone decomposition} \\ \text{of } X \text{ (in } \mathscr{C}) \text{ with a linearization as} \\ \text{with } \ell(D) = (F_0,F_1,...,X',...,F_k) \\ \text{with the objects } F_i \in \mathscr{F}, \ k \in \mathbb{N}. \end{array} \right\}.$$

Algebraic fragmentation pseudo-metric

Assume we can define $w(D) \in \mathbb{R}_{\geq 0}$, weight of a cone decomposition. One can give the following definition.

Definition

Let $\mathscr{F}\subset \mathrm{Obj}(\mathscr{C})$ be a family of objects in \mathscr{C} . For two objects $X,X'\in \mathrm{Obj}(\mathscr{C})$, define

$$\delta^{\mathscr{F}}(X,X') := \inf \left\{ w(D) \middle| \begin{array}{l} D \text{ is an iterated cone decomposition} \\ \text{of } X \text{ (in } \mathscr{C}) \text{ with a linearization as} \\ \text{with } \ell(D) = (F_0,F_1,...,X',...,F_k) \\ \text{with the objects } F_i \in \mathscr{F}, \ k \in \mathbb{N}. \end{array} \right\}.$$

Moreover, define $d^{\mathscr{F}}(X,X') := \max\{\delta^{\mathscr{F}}(X,X'),\delta^{\mathscr{F}}(X',X)\}.$

Algebraic fragmentation pseudo-metric

Assume we can define $w(D) \in \mathbb{R}_{\geq 0}$, weight of a cone decomposition. One can give the following definition.

Definition

Let $\mathscr{F}\subset \mathrm{Obj}(\mathscr{C})$ be a family of objects in \mathscr{C} . For two objects $X,X'\in \mathrm{Obj}(\mathscr{C})$, define

$$\delta^{\mathscr{F}}(X,X') := \inf \left\{ w(D) \middle| \begin{array}{l} D \text{ is an iterated cone decomposition} \\ \text{of } X \text{ (in } \mathscr{C}) \text{ with a linearization as} \\ \text{with } \ell(D) = (F_0,F_1,...,X',...,F_k) \\ \text{with the objects } F_i \in \mathscr{F}, \ k \in \mathbb{N}. \end{array} \right\}$$

Moreover, define $d^{\mathscr{F}}(X,X') := \max\{\delta^{\mathscr{F}}(X,X'),\delta^{\mathscr{F}}(X',X)\}.$

We will call $d^{\mathscr{F}}$ an algebraic fragmentation pseudo-metric if $d^{\mathscr{F}}$ satisfies the following triangle inequality,

$$d^{\mathscr{F}}(X,X') \le d^{\mathscr{F}}(X,X'') + d^{\mathscr{F}}(X'',X'). \tag{1}$$

Use topology to study algebra

Question

How to define a (non-trivial) w(D)?

Use topology to study algebra

Question

How to define a (non-trivial) w(D)?

One answer is from a joint work with P. Biran and O. Cornea (in progress). The main idea goes as follows.

Corollary

Let $\mathscr C$ be a triangulated persistence category, then $(\mathrm{Obj}(\mathscr C), d^{\mathscr F})$ is a topological space, and moreover, it is an H-space.

Use topology to study algebra

Question

How to define a (non-trivial) w(D)?

One answer is from a joint work with P. Biran and O. Cornea (in progress). The main idea goes as follows.

Corollary

Let $\mathscr C$ be a triangulated persistence category, then $(\mathrm{Obj}(\mathscr C), d^{\mathscr F})$ is a topological space, and moreover, it is an H-space.

Example (of a triangulated persistence category)

 $Ho_0(\mathscr{C})$ where \mathscr{C} is a **filtered pre-triangulated** dg-category.

• Recall that a **k**-linear category $\mathscr C$ is a category where any hom-set $\operatorname{Hom}_{\mathscr C}(A,B)$ is a **k**-module. (For instance, $\operatorname{Hot}^b(\mathscr A)$ earlier is a **k**-linear category.)

- Recall that a **k**-linear category $\mathscr C$ is a category where any hom-set $\operatorname{Hom}_{\mathscr C}(A,B)$ is a **k**-module. (For instance, $\operatorname{Hot}^b(\mathscr A)$ earlier is a **k**-linear category.)
- A %-bimodule is a functor

$$M: \mathscr{C}^{\mathrm{op}} \otimes \mathscr{C} \to \mathrm{Mod}(\mathbf{k}),$$

where recall that $Mod(\mathbf{k})$ is the category of \mathbf{k} -module.

- Recall that a **k**-linear category $\mathscr C$ is a category where any hom-set $\operatorname{Hom}_{\mathscr C}(A,B)$ is a **k**-module. (For instance, $\operatorname{Hot}^b(\mathscr A)$ earlier is a **k**-linear category.)
- A %-bimodule is a functor

$$M: \mathscr{C}^{\mathrm{op}} \otimes \mathscr{C} \to \mathrm{Mod}(\mathbf{k}),$$

where recall that $Mod(\mathbf{k})$ is the category of \mathbf{k} -module. Decipher the definition.

(1) For $(X,Y) \in \text{Obj}(\mathscr{C}^{\text{op}} \otimes \mathscr{C})$, M(X,Y) is a **k**-module.

- Recall that a **k**-linear category $\mathscr C$ is a category where any hom-set $\operatorname{Hom}_{\mathscr C}(A,B)$ is a **k**-module. (For instance, $\operatorname{Hot}^b(\mathscr A)$ earlier is a **k**-linear category.)
- A &-bimodule is a functor

$$M: \mathscr{C}^{\mathrm{op}} \otimes \mathscr{C} \to \mathrm{Mod}(\mathbf{k}),$$

where recall that $Mod(\mathbf{k})$ is the category of \mathbf{k} -module.

Decipher the definition.

- (1) For $(X, Y) \in \text{Obj}(\mathscr{C}^{\text{op}} \otimes \mathscr{C})$, M(X, Y) is a **k**-module.
- $(2) \quad \mathsf{For} \ (f,g) \in \mathsf{Hom}_{\mathscr{C}^{\mathsf{op}} \otimes \mathscr{C}} ((X,Y),(X',Y')) = \mathsf{Hom}_{\mathscr{C}^{\mathsf{op}}} (X,X') \otimes \mathsf{Hom}_{\mathscr{C}} (Y,Y'),$

$$M(f,g) \in \operatorname{Hom}_{\operatorname{Mod}(\mathbf{k})}(M(X,Y),M(X',Y')),$$

i.e., for any
$$x \in M(X, Y)$$
, $M((f,g))(x) \in M(X', Y')$.

- Recall that a **k**-linear category \mathscr{C} is a category where any hom-set $\operatorname{Hom}_{\mathscr{C}}(A,B)$ is a **k**-module. (For instance, $\operatorname{Hot}^b(\mathscr{A})$ earlier is a **k**-linear category.)
- A &-bimodule is a functor

$$M: \mathscr{C}^{\mathrm{op}} \otimes \mathscr{C} \to \mathrm{Mod}(\mathbf{k}),$$

where recall that $\operatorname{Mod}(\mathbf{k})$ is the category of $\mathbf{k}\text{-module}.$

Decipher the definition.

- (1) For $(X, Y) \in \text{Obj}(\mathscr{C}^{\text{op}} \otimes \mathscr{C})$, M(X, Y) is a **k**-module.
- (2) For $(f,g) \in \operatorname{Hom}_{\mathscr{C}^{\operatorname{op}} \otimes \mathscr{C}}((X,Y),(X',Y')) = \operatorname{Hom}_{\mathscr{C}^{\operatorname{op}}}(X,X') \otimes \operatorname{Hom}_{\mathscr{C}}(Y,Y'),$

$$M(f,g) \in \operatorname{Hom}_{\operatorname{Mod}(\mathbf{k})}(M(X,Y),M(X',Y')),$$

i.e., for any $x \in M(X,Y)$, $M((f,g))(x) \in M(X',Y')$. In classical format,

$$\operatorname{Hom}_{\mathscr{C}^{\operatorname{op}}}(X,X')\otimes M(X,Y)\otimes \operatorname{Hom}_{\mathscr{C}}(Y,Y')\to M(X',Y')$$

defined by $(f, x, g) \mapsto M(f, g)(x) =: f \cdot x \cdot g$.

Observe that every **k**-linear category $\mathscr C$ is a $\mathscr C$ -bimodule, that is, $\mathscr C:\mathscr C^{\mathrm{op}}\otimes\mathscr C\to\mathrm{Mod}(\mathbf k)$ by $\mathscr C(X,Y)=\mathrm{Hom}_{\mathscr C}(X,Y).$

Observe that every k-linear category $\mathscr C$ is a $\mathscr C$ -bimodule, that is,

$$\mathscr{C}:\mathscr{C}^{\mathrm{op}}\otimes\mathscr{C}\to\mathrm{Mod}(\mathbf{k})\ \mathrm{by}\ \mathscr{C}(X,Y)=\mathrm{Hom}_\mathscr{C}(X,Y).$$

• (complex of \mathscr{C} -bimodules) For each $n \ge 0$, define

$$C_n(\mathscr{C}, M) := \prod_{X_0, \dots, X_n} M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \otimes \dots \otimes \operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n).$$

Note that $C_n(\mathscr{C}, M)$ is a **k**-module!

Observe that every ${\bf k}$ -linear category ${\mathscr C}$ is a ${\mathscr C}$ -bimodule, that is,

$$\mathscr{C}:\mathscr{C}^{\mathrm{op}}\otimes\mathscr{C}\to\mathrm{Mod}(\mathbf{k})\ \mathrm{by}\ \mathscr{C}(X,Y)=\mathrm{Hom}_\mathscr{C}(X,Y).$$

• (complex of \mathscr{C} -bimodules) For each $n \ge 0$, define

$$C_n(\mathscr{C}, M) := \prod_{X_0, \dots, X_n} M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \otimes \dots \otimes \operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n).$$

Note that $C_n(\mathscr{C}, M)$ is a **k**-module!

Remark

When
$$n = 0$$
, $C_0(\mathcal{C}, M) = \prod_{X \in \text{Obj}(\mathcal{C})} M(X, X)$.

Observe that every k-linear category $\mathscr C$ is a $\mathscr C\text{-bimodule},$ that is,

$$\mathscr{C}:\mathscr{C}^{\mathrm{op}}\otimes\mathscr{C}\to\mathrm{Mod}(\mathbf{k})\ \mathrm{by}\ \mathscr{C}(X,Y)=\mathrm{Hom}_{\mathscr{C}}(X,Y).$$

• (complex of \mathscr{C} -bimodules) For each $n \ge 0$, define

$$C_n(\mathscr{C}, M) := \prod_{X_0, \dots, X_n} M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \otimes \dots \otimes \operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n).$$

Note that $C_n(\mathscr{C}, M)$ is a **k**-module!

Remark

When
$$n = 0$$
, $C_0(\mathscr{C}, M) = \prod_{X \in \text{Obj}(\mathscr{C})} M(X, X)$.

Remark

From the complex above, one should have a feeling that Hochschild homology is related to cyclic homology.

Observe that every **k**-linear category $\mathscr C$ is a $\mathscr C$ -bimodule, that is, $\mathscr C:\mathscr C^{\mathrm{op}}\otimes\mathscr C\to\mathrm{Mod}(\mathbf k)$ by $\mathscr C(X,Y)=\mathrm{Hom}_\mathscr C(X,Y).$

• (complex of \mathscr{C} -bimodules) For each $n \ge 0$, define

$$C_n(\mathscr{C}, M) := \prod_{X_0, \dots, X_n} M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \otimes \dots \otimes \operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n).$$

Note that $C_n(\mathscr{C}, M)$ is a **k**-module!

Remark

When n = 0, $C_0(\mathscr{C}, M) = \prod_{X \in \text{Obj}(\mathscr{C})} M(X, X)$.

Remark

From the complex above, one should have a feeling that Hochschild homology is related to cyclic homology.

Consider the following complex (of k-modules),

$$\cdots \xrightarrow{\partial_3} C_2(\mathscr{C}, M) \xrightarrow{\partial_2} C_1(\mathscr{C}, M) \xrightarrow{\partial_1} C_0(\mathscr{C}, M) \to 0.$$

Hochschild boundary operator

The boundary operator ∂_n is defined as follows,

$$\partial_n(m \otimes a_1 \otimes \cdots \otimes a_n) = \begin{cases} ma_1 \otimes a_2 \otimes \cdots \otimes a_n \\ + \sum_{i=1}^{n-1} m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \\ + a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1} \end{cases}.$$

Hochschild boundary operator

The boundary operator ∂_n is defined as follows,

$$\partial_n(m \otimes a_1 \otimes \cdots \otimes a_n) = \begin{cases} ma_1 \otimes a_2 \otimes \cdots \otimes a_n \\ + \sum_{i=1}^{n-1} m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \\ + a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1} \end{cases}.$$

For a general element $m \otimes a_1 \otimes \cdots \otimes a_n$, there are three "compositions" involved in ∂_n .

- ma_1 : $M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \to M(X_n, X_1)$.
- $a_i a_{i+1}$: $\operatorname{Hom}_{\mathscr{C}}(X_{i-1}, X_i) \otimes \operatorname{Hom}_{\mathscr{C}}(X_i, X_{i+1}) \to \operatorname{Hom}_{\mathscr{C}}(X_{i-1}, X_{i+1})$.
- $a_n m$: $\operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n) \otimes M(X_n, X_0) \to M(X_{n-1}, X_0)$.

Therefore, $\partial_n : C_n(\mathscr{C}, M) \to C_{n-1}(\mathscr{C}, M)$.

Hochschild boundary operator

The boundary operator ∂_n is defined as follows,

$$\partial_n(m \otimes a_1 \otimes \cdots \otimes a_n) = \begin{cases} ma_1 \otimes a_2 \otimes \cdots \otimes a_n \\ + \sum_{i=1}^{n-1} m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \\ + a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1} \end{cases}.$$

For a general element $m \otimes a_1 \otimes \cdots \otimes a_n$, there are three "compositions" involved in ∂_n .

- ma_1 : $M(X_n, X_0) \otimes \operatorname{Hom}_{\mathscr{C}}(X_0, X_1) \to M(X_n, X_1)$.
- $a_i a_{i+1}$: $\operatorname{Hom}_{\mathscr{C}}(X_{i-1}, X_i) \otimes \operatorname{Hom}_{\mathscr{C}}(X_i, X_{i+1}) \to \operatorname{Hom}_{\mathscr{C}}(X_{i-1}, X_{i+1})$.
- $a_n m$: $\operatorname{Hom}_{\mathscr{C}}(X_{n-1}, X_n) \otimes M(X_n, X_0) \to M(X_{n-1}, X_0)$.

Therefore, $\partial_n : C_n(\mathscr{C}, M) \to C_{n-1}(\mathscr{C}, M)$.

Exercise

For any $n \ge 1$, $\partial_n \circ \partial_{n+1} = 0$.

Hochschild homology of a **k**-linear category

Definition

Let $\mathscr C$ be a **k**-linear category and M be a $\mathscr C$ -bimodule. Then the **Hochschild homology of** $\mathscr C$ with coefficient in M is defined by

$$\operatorname{HH}_*(\mathcal{C},M):=H_*(C_\bullet(\mathcal{C},M),\partial_\bullet).$$

If $M = \mathscr{C}$, then for brevity, denote $HH_*(\mathscr{C}) := HH_*(\mathscr{C}, \mathscr{C})$.

Hochschild homology of a **k**-linear category

Definition

Let $\mathscr C$ be a **k**-linear category and M be a $\mathscr C$ -bimodule. Then the **Hochschild homology of** $\mathscr C$ with coefficient in M is defined by

$$\operatorname{HH}_*(\mathcal{C},M) := H_*(C_\bullet(\mathcal{C},M),\partial_\bullet).$$

If $M = \mathscr{C}$, then for brevity, denote $HH_*(\mathscr{C}) := HH_*(\mathscr{C}, \mathscr{C})$.

Remark

(1) Adding grading in the **k**-linear category $\mathscr C$ leads to a double complex and spectral sequence. (2) Hochschild **co**homology of $\mathscr C$ with coefficient in M is defined via $\operatorname{Hom}_{\mathscr C^{\operatorname{op}}\times\mathscr C}(\cdot,M)$.

Hochschild homology of a **k**-linear category

Definition

Let $\mathscr C$ be a **k**-linear category and M be a $\mathscr C$ -bimodule. Then the **Hochschild homology of** $\mathscr C$ with coefficient in M is defined by

$$\mathrm{HH}_*(\mathscr{C},M) := H_*(C_{\bullet}(\mathscr{C},M),\partial_{\bullet}).$$

If $M = \mathscr{C}$, then for brevity, denote $HH_*(\mathscr{C}) := HH_*(\mathscr{C}, \mathscr{C})$.

Remark

(1) Adding grading in the **k**-linear category $\mathscr C$ leads to a double complex and spectral sequence. (2) Hochschild **co**homology of $\mathscr C$ with coefficient in M is defined via $\operatorname{Hom}_{\mathscr C^{\operatorname{op}}\times\mathscr C}(\cdot,M)$.

Example

If $\mathscr C$ has only one object, then $\mathscr C$ is a **k**-algebra denoted by A, and a $\mathscr C$ -bimodule is an A-bimodule. Moreover, $\operatorname{HH}_*(\mathscr C,M)=\operatorname{HH}_*(A,M)$.

Low degrees computations

Example (Continued from the previous example)

Recall that $\partial_1(m \otimes a) = ma + am = ma - am$. So, $\operatorname{im}(\partial_1) = [M, A]$. Therefore,

$$HH_0(A, M) = M/[M, A].$$

In particular, if M = A, then $HH_0(A) = A/[A, A]$. Moreover, if A is commutative over \mathbf{k} , then $HH_0(A) = A$.

Low degrees computations

Example (Continued from the previous example)

Recall that $\partial_1(m \otimes a) = ma + am = ma - am$. So, $\operatorname{im}(\partial_1) = [M, A]$. Therefore,

$$HH_0(A, M) = M/[M, A].$$

In particular, if M = A, then $HH_0(A) = A/[A, A]$. Moreover, if A is commutative over \mathbf{k} , then $HH_0(A) = A$.

Example

If A is commutative over \mathbf{k} , then

$$HH_1(A, M) = M \otimes_A \Omega_{A/\mathbf{k}}$$

where $\Omega_{A/k}$ is the (degree-1) Kähler differential of A.

Low degrees computations

Example (Continued from the previous example)

Recall that $\partial_1(m \otimes a) = ma + am = ma - am$. So, $\operatorname{im}(\partial_1) = [M, A]$. Therefore,

$$HH_0(A, M) = M/[M, A].$$

In particular, if M = A, then $HH_0(A) = A/[A, A]$. Moreover, if A is commutative over \mathbf{k} , then $HH_0(A) = A$.

Example

If A is commutative over \mathbf{k} , then

$$HH_1(A, M) = M \otimes_A \Omega_{A/\mathbf{k}}$$

where $\Omega_{A/\mathbf{k}}$ is the (degree-1) Kähler differential of A.

Exercise

$$HH_i(\mathbf{k}) = \left\{ \begin{array}{ll} \mathbf{k} & \text{if} \quad i = 0 \\ 0 & \text{if} \quad i \ge 1 \end{array} \right..$$

Why do we care about HH_{*}?

Conjecture (Kontsevich 1994 ICM)

Let M be a compact symplectic manifold. Then

$$QH^*(M) \simeq HH^*(Fuk(M))$$

Why do we care about HH_{*}?

Conjecture (Kontsevich 1994 ICM)

Let M be a compact symplectic manifold. Then

$$QH^*(M) \simeq HH^*(Fuk(M))$$

Hence, one recovers quantum ring structure from computation of the Fukaya category. Under certain conditions, this conjecture is verified by Ganatra in preprint: Automatically generating Fukaya categories and computing quantum cohomology (2016-2019).

Why do we care about HH_{*}?

Conjecture (Kontsevich 1994 ICM)

Let M be a compact symplectic manifold. Then

$$QH^*(M) \simeq HH^*(Fuk(M))$$

Hence, one recovers quantum ring structure from computation of the Fukaya category. Under certain conditions, this conjecture is verified by Ganatra in preprint: Automatically generating Fukaya categories and computing quantum cohomology (2016-2019).

Theorem (Seidel 2002 ICM, Ganatra 2012)

Let M be a Liouville manifold, and denote by W(M) the wrapped Fukaya category of M. Then, under a certain condition, one has

$$SH^*(M) \simeq HH^*(W(M)).$$

Another important progress: Abouzaid's generating criterion (Publ. IHES 2010).

Desired map f_2 (character)

Proposition (cf. Proposition 3.8 in Seidel's book)

Let $\mathscr C$ be an enhanced triangulated k-linear category (i.e., a homotopy category of a pre-triangulated k-linear dg-category). Then there exists a well-defined homomorphism

$$f_2: K_0(\mathcal{C}) \to \mathrm{HH}_0(\mathcal{C})$$
 by $f_2([X]) = [e_X]$

for any $X \in \text{Obj}(\mathscr{C})$, where $e_X \in \text{Hom}_{\mathscr{C}}(X,X)$ is the identity map.

Note that $e_X \in \operatorname{Hom}_{\mathscr{C}}(X,X) \subset C_0(\mathscr{C},\mathscr{C})$.

Desired map f_2 (character)

Proposition (cf. Proposition 3.8 in Seidel's book)

Let $\mathscr C$ be an enhanced triangulated **k**-linear category (i.e., a homotopy category of a pre-triangulated **k**-linear dg-category). Then there exists a well-defined homomorphism

$$f_2: K_0(\mathcal{C}) \to \mathrm{HH}_0(\mathcal{C})$$
 by $f_2([X]) = [e_X]$

for any $X \in \text{Obj}(\mathscr{C})$, where $e_X \in \text{Hom}_{\mathscr{C}}(X,X)$ is the identity map.

Note that $e_X \in \operatorname{Hom}_{\mathscr{C}}(X,X) \subset C_0(\mathscr{C},\mathscr{C})$.

Example

Consider $\mathscr{C} = \operatorname{Hot}^b(\operatorname{Mod}(\mathbf{k}))$. Recall that $K_0(\mathscr{C}) = K_0(\operatorname{Mod}(\mathbf{k}))$. If [X] = [A] + [B] in $K_0(\operatorname{Mod}(\mathbf{k}))$, then $X \simeq A \oplus B$. Then

$$e_X = e_{A \oplus B} = e_A + e_B$$

Then
$$f_2([X]) = [e_X] = [e_A] + [e_B] = f_2([A]) + f_2([B]) = f_2([A] + [B]).$$

