Viterbo conjecture

Jean Gutt

Institut de Mathématiques de Toulouse & Institut National Universitaire Champollion

Viterbo's conjecture

Conjecture (Viterbo) If $X \subset (\mathbb{R}^{2n}, \omega_0)$ is a convex set, then for any normalised symplectic capacity c,

 $c(X) \le (n! \operatorname{Vol}(X))^{\frac{1}{n}}$

Moreover, we have equality iff X is symplectomorphic to the ball.

Viterbo's conjecture

Conjecture (Viterbo) If $X \subset (\mathbb{R}^{2n}, \omega_0)$ is a convex set, then for any normalised symplectic capacity c,

 $c(X) \le (n! \operatorname{Vol}(X))^{\frac{1}{n}}$

Moreover, we have equality iff X is symplectomorphic to the ball.

Definition

A symplectic capacity is a function *c* which assigns to each symplectic manifold (X, ω) a number $c(X, \omega) \in [0, \infty]$, satisfying the following axioms :

- ► (Monotonicity) If $(X, \omega) \hookrightarrow (X', \omega')$, then $c(X, \omega) \le c(X', \omega')$.
- (Conformality) If $r \in \mathbb{R}_{>0}$ then $c(X, r\omega) = rc(X, \omega)$.

We say that a capacity c is normalized if

Viterbo's conjecture

Conjecture (Viterbo) If $X \subset (\mathbb{R}^{2n}, \omega_0)$ is a convex set, then for any normalised symplectic capacity c,

 $c(X) \le (n! \operatorname{Vol}(X))^{\frac{1}{n}}$

Moreover, we have equality iff X is symplectomorphic to the ball.

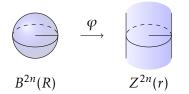
Definition

A symplectic capacity is a function *c* which assigns to each symplectic manifold (X, ω) a number $c(X, \omega) \in [0, \infty]$, satisfying the following axioms :

- ► (Monotonicity) If $(X, \omega) \hookrightarrow (X', \omega')$, then $c(X, \omega) \le c(X', \omega')$.
- ► (Conformality) If $r \in \mathbb{R}_{>0}$ then $c(X, r\omega) = rc(X, \omega)$.

We say that a capacity *c* is normalized if

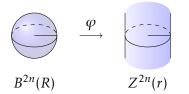
•
$$c(B^{2n}(1)) = c(Z^{2n}(1)) = 1.$$



Theorem (Gromov) $B^{2n}(R) \hookrightarrow^{s} Z^{2n}(r) \simeq D^{2}(r) \times \mathbb{R}^{2n-2}$ iff $R \leq r$.

Example (Gromov width)

$$c_{\rm Gr}(X,\omega) = \sup\{r | \exists (B^{2n}(r),\omega_0) \hookrightarrow^s (X,\omega)\}$$



Theorem (Gromov) $B^{2n}(R) \hookrightarrow^{s} Z^{2n}(r) \simeq D^{2}(r) \times \mathbb{R}^{2n-2}$ iff $R \leq r$.

Example (Gromov width)

$$c_{\rm Gr}(X,\omega) = \sup\{r | \exists (B^{2n}(r),\omega_0) \hookrightarrow^s (X,\omega)\}$$

Example (Cylindrical capacity)

$$c_Z(X,\omega) = \inf\{r \mid \exists (X,\omega) \hookrightarrow^s (D^2(r) \times \mathbb{R}^{2n-2}, \omega_0)\}$$

Example

- The first *Ekeland-Hofer capacity*, c_1^{EH} ,
- The Hofer-Zehnder capacity, c_{HZ} ,
- ► The Viterbo capacity, c_{SH},
- The first capacity from S^1 -equivariant symplectic homology, c_1^{CH} ,
- The first *ECH capacity*, c_1^{ECH} , (only in dimension 4)

Example

- The first *Ekeland-Hofer capacity*, c_1^{EH} ,
- The Hofer-Zehnder capacity, c_{HZ} ,
- ► The Viterbo capacity, c_{SH},
- The first capacity from S^1 -equivariant symplectic homology, c_1^{CH} ,
- The first *ECH capacity*, c_1^{ECH} , (only in dimension 4)

Lemma If $X \subset \mathbb{R}^{2n}$ is a convex set, then

$$(c_{\mathrm{Gr}}(X))^n \le n! \operatorname{Vol}(X)$$

Theorem *If* $X \subset \mathbb{R}^{2n}$ *is a convex set, then*

$$c_1^{EH}(X) = c_{HZ}(X) = c_1^{CH}(X) = c_{SH}(X) = T_{\min}$$

Theorem If $X \subset \mathbb{R}^{2n}$ is a convex set, then

$$c_1^{EH}(X) = c_{HZ}(X) = c_1^{CH}(X) = c_{SH}(X) = T_{\min}$$

Conjecture (Weak Viterbo conjecture) If $X \subset \mathbb{R}^{2n}$ is a convex set, then

$$(T_{\min})^n \le n! \operatorname{Vol}(X)$$

Strong Viterbo conjecture

Conjecture (Strong Viterbo conjecture) All normalized symplectic capacities coincide on convex sets in \mathbb{R}^{2n} .

Strong V. Conj. \Rightarrow V. Conj. \Rightarrow Weak V. Conj.

Strong Viterbo conjecture

Conjecture (Strong Viterbo conjecture)

All normalized symplectic capacities coincide on convex sets in \mathbb{R}^{2n} .

Strong V. Conj.
$$\Rightarrow$$
 V. Conj. \Rightarrow Weak V. Conj.

Idea

Either, prove that for any convex set $X \subset \mathbb{R}^{2n}$

$$c_{\rm Gr}(X)=c_Z(X)$$

Or, find a convex set $X \subset \mathbb{R}^{2n}$ *such that*

$$(T_{\min})^n > n! \operatorname{Vol}(X).$$

Corollary 1

Theorem (ABHS)

There exists a C^3 -neighborhood A of the space of Zoll contact forms on S^3 such that

 $T_{\min}(\alpha)^2 \leq \operatorname{Vol}(S^3, \alpha \wedge d\alpha) \forall \alpha \in \mathcal{A}$

with equality holding if and only if α is Zoll.

Corollary 1

Theorem (ABHS)

There exists a C^3 -neighborhood A of the space of Zoll contact forms on S^3 such that

$$T_{\min}(\alpha)^2 \leq \operatorname{Vol}(S^3, \alpha \wedge d\alpha) \forall \alpha \in \mathcal{A}$$

with equality holding if and only if α is Zoll.

Corollary

Let c be either the Ekeland-Hofer or the Hofer-Zehnder capacity on (\mathbb{R}^4, ω_0) . There exists a C³-neighborhood C of the set B of all convex domains in \mathbb{R}^4 whose closure is symplectomorphic to a closed 4-ball, within the set of all convex smooth domains in \mathbb{R}^4 such that

$$c(C)^2 \leq 2\operatorname{Vol}(C) \quad \forall C \in \mathcal{C},$$

with equality holding if and only if C belongs to \mathcal{B} .

Quick recap

 $\Sigma \subset \mathbb{R}^{2n}$ star-shaped bounded domain with smooth boundary. Then

$$\lambda_0 = \frac{1}{2} := \sum_{i=1}^n x^i dy^i - y^i dx^i$$

restricts to a contact form on $\partial \Sigma$. $h_{\Sigma}: S^{2n-1} \to \mathbb{R}$ smooth positive, $\Sigma = \{rz | z \in S^{2n-1}, 0 \le r \le h_{\Sigma}(z)\}$ $\varphi: S^{2n-1} \to \partial \Sigma, \quad z \mapsto h_{\Sigma}(z)z$

$$\varphi^{\star}(\lambda_0|_{\partial\Sigma}) = h_{\Sigma}^2 \lambda_0|_{S^{2n-1}}$$

 α for $\xi_0 \Leftrightarrow$ star-shaped domains

$$Vol(S^{3}, \alpha \wedge d\alpha) = Vol(S^{3}, \varphi^{\star}(\lambda_{0}|_{\partial \Sigma}) \wedge d\varphi^{\star}(\lambda_{0}|_{\partial \Sigma})$$
$$= Vol(\partial \Sigma, \lambda_{0}|_{\partial \Sigma}) \wedge d\lambda_{0}|_{\partial \Sigma})$$
$$= Vol(\partial \Sigma, (\lambda_{0} \wedge d\lambda_{0})|_{\partial \Sigma})$$
$$= Vol(\Sigma, \omega_{0} \wedge \omega_{0})$$
$$= 2 Vol(\Sigma, dx^{1} \wedge dy^{1} \wedge dx^{2} \wedge dy^{2})$$
$$:= 2 Vol(\Sigma)$$

Convexity vs dyn convex

Convexity is not a symplectic notion. HWZ introduced the dynamical convexity

Definition

A contact form α on S^{2n-1} is *dynamically convex* if it is non-degenerate and all closed Reeb orbits have Conley-Zenhder index at least n + 1. *Convexity* is not a symplectic notion. HWZ introduced the dynamical convexity

Definition

A contact form α on S^{2n-1} is *dynamically convex* if it is non-degenerate and all closed Reeb orbits have Conley-Zenhder index at least n + 1.

Theorem (HWZ)

Every convex domain is dynamically convex.

Convexity is not a symplectic notion. HWZ introduced the dynamical convexity

Definition

A contact form α on S^{2n-1} is *dynamically convex* if it is non-degenerate and all closed Reeb orbits have Conley-Zenhder index at least n + 1.

Theorem (HWZ)

Every convex domain is dynamically convex.

Conjecture

Every dynamically convex domain is symplectomorphic to a convex domain.

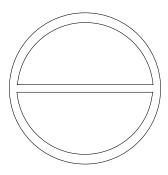
Theorem

For every $\epsilon > 0$ there is a dynamically convex contact form α on S^3 such that

$$2 - \epsilon < \frac{T_{\min}^2}{\operatorname{Vol}(S^3, \alpha \wedge d\alpha)} < 2$$

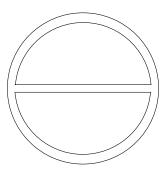
In particular, the supremum of the systolic ratio over all dynamically convex contact forms on S^3 is at least 2.

"Proof"



Jean Gutt Viterbo conjecture

"Proof"



Dichotomy *Either* Viterbo conjecture or dynamically convex \simeq convex

Jean Gutt Viterbo conjecture

toric domains

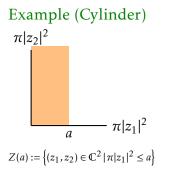
Definition A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where Ω is a domain in $[0, \infty)^n$ and

$$\mu: \mathbb{C}^n \to [0,\infty)^n \quad \mu(z_1,\ldots,z_n) = (\pi |z_1|^2,\ldots,\pi |z_n|^2)$$

toric domains

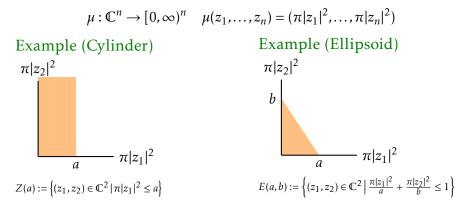
Definition A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where Ω is a domain in $[0, \infty)^n$ and

$$\mu: \mathbb{C}^n \to [0,\infty)^n \quad \mu(z_1,\ldots,z_n) = (\pi |z_1|^2,\ldots,\pi |z_n|^2)$$



toric domains

Definition A toric domain $X_{\Omega} \subset \mathbb{C}^n$ is a set of the form $X_{\Omega} = \mu^{-1}(\Omega)$ where Ω is a domain in $[0, \infty)^n$ and



dynamically convex toric domains

Definition

If Ω' is a domain in $[0,\infty)^{n-1}$ and $f: \Omega' \to [0,\infty)$ is a non-increasing function A toric domain X_{Ω} is called *dynamically convex* if there exists a domain $\Omega' \subset [0,\infty)^{n-1}$ and a non-increasing, continuous, piecewise smooth function $f: \Omega' \to [0,\infty)$ such that Ω is the relatively open set in $[0,\infty)^n$ bounded by the coordinate hyperplanes and the graph of a non-increasing function.

dynamically convex toric domains

Remark Dynamically convex toric domains are not necessarily convex

dynamically convex toric domains

Remark Dynamically convex toric

domains are not necessarily convex

Proposition

A toric domain X_{Ω} is dynamically convex if, and only if, there is a sequence of domains Ω_{ϵ} converging to X_{Ω} in the C^{0} -topology and dynamically convex contact forms λ_{ϵ} on $\partial \Omega_{\epsilon}$ converging to the stardard Liouville form $\lambda_{0}|_{\partial X_{\Omega}}$.

strong Viterbo conjecture

Theorem

For a 4-dimensional dynamically convex toric domain X_{Ω} all symplectic capacities coincide.

Theorem

For a 4-dimensional dynamically convex toric domain X_{Ω} all symplectic capacities coincide.

Define the non-disjoint union of two cylinders as

 $Z_2(a,b) := \{ (z_1, z_2) \in \mathbb{C}^2 \, | \, \pi |z_1|^2 \le a \text{ or } \pi |z_2|^2 \le b \}$

strong Viterbo conjecture

Theorem

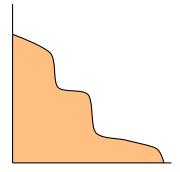
For a 4-dimensional dynamically convex toric domain X_{Ω} all symplectic capacities coincide.

Define the non-disjoint union of two cylinders as

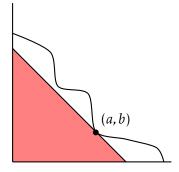
$$Z_2(a,b) := \{(z_1, z_2) \in \mathbb{C}^2 \, | \, \pi |z_1|^2 \le a \text{ or } \pi |z_2|^2 \le b\}$$

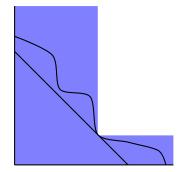
Lemma

$$Z_2(a,b) \hookrightarrow^s Z(a+b)$$

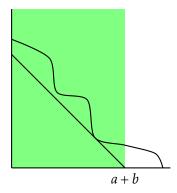


Jean Gutt Viterbo conjecture

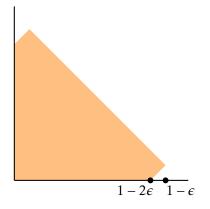




Jean Gutt Viterbo conjecture



convexity?



 $c_{\rm Gr} = 1 - 2\epsilon$ (?), $c_Z = 1 - \epsilon$ But (weak) Viterbo conjecture is still true !